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Why do we care about causality?

I Most social science theories take the form of causal
relationships.

I What would happen to Y if Z changes?
I We call Y the outcome and Z the treatment.
I The better we understand causal relationships, the better we

can design policy interventions.
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How do we define causality?

I We possess a sample of N units.

I Denote the outcome of interest for unit i as Yi and the
treatment as Zi .

I Then, we have the Neyman-Rubin framework:

Yi =
{

Yi (0), Zi = 0
Yi (1), Zi = 1.

I Yi (z) is called the “potential outcome.”
I τi = Yi (1)− Yi (0) is the individualistic treatment effect.
I τ = 1

N
∑N

i=1 τi is known as the average treatment effect (ATE).
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Interference

I The Neyman-Rubin framework is built upon the Stable Unit
Treatment Value Assumption (SUTVA).

I Interference occurs when SUTVA is violated: the outcome of
one unit can be affected by the treatment of other units.

I It is also known as “spillover effect,” “diffusion effect,” or “peer
effect” in the literature.

I Interference differs from contagion.
I The phenomenon is prevalent in the real world:

I Wind turbines erected in one district may change public opinion
in nearby areas over a long period (Stokes 2016).

I Protests in fixed locations can alter the political choice of
bystanders over subsequent elections (Wang and Wong 2021).
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Interference in the Neyman-Rubin framework

I Under interference, the potential outcome of unit i can be
written as

Yi = Yi (Z) , where Z = (Z1,Z2, . . . ,ZN)′.

I For each i , there can be 2N potential outcomes.
I There are multiple challenges:

I What causal estimands can be defined, and what identification
assumptions do we need?

I How do we isolate the direct effect from the spillover effect
driven by interference?

I How can we conduct statistical inference?
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Define causal effects under interference

I Consider a simple experiment with two subjects and Bernoulli
assignment

Treatment status Prob Ye Jiawei

(1, 1) 0.25 7 5
(1, 0) 0.25 7 5
(0, 1) 0.25 2 3
(0, 0) 0.25 2 3

I YYe(1) = 7, YYe(0) = 2, and τYe = 5.
I YJiawei (1) = 5, YJiawei (0) = 3, and τJiawei = 2.
I τ = 1

2(5 + 2) = 3.5.
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subjects: YYe = YYe (ZYe ,ZJiawei ).

I τYe(ZJiawei ) = YYe (1,ZJiawei )− YYe (0,ZJiawei ) is now a
random variable.

I So is the ATE.
I To obtain meaningful estimands, we marginalize τYe(ZJiawei )

over ZJiawei .
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treatment assignment mechanism.

I For each unit, we have

τi = EZ−i [Yi (1,Z−i )− Yi (0,Z−i )]

I The expected average treatment effect (EATE) is defined as

τ = 1
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EZ−i [Yi (0,Z−i )] .

I The average effect from switching one unit’s treatment status
from 0 to 1 on its own outcome under the current treatment
assignment mechanism.
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Estimate the EATE

I Sävje, Aronow, and Hudgens (2021): the EATE is identifiable
and can be estimated by the difference-in-means estimator.

I The estimate will be unbiased and consistent under most
experimental designs.

I In other words, nothing but the interpretation has changed.
I The requirement is that treatment assignment is relatively

independent across units.
I Consistency holds for complete randomization but not for

paired randomization.
I How about the indirect effect?
I Classical methods assume that we know the interference

structure: how one’s outcome is affected by others’ treatments.
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Application I

I In Duflo and Saez (2003), the authors try to promote a
retirement plan among staff members in a university.

I 220 out of 330 departments were assigned into the treatment
group.

I In each treated department, 50% of staff members who did not
enroll in the plan were treated.

I Treated staff members received an invite to an information fair
on the plan.
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I This two-stage randomization is called a “split-plot” design.

I There were 2,039 treated staff members and 2,129 untreated
ones from departments in the treatment group.

I There were 2,043 staff members from departments in the
control group.

I The outcome is whether staff member attended the fair and
whether they enrolled in the plan.

I Staff members may share the information with each other.
I But we can still estimate the direct effect or the EATE.
I How do we estimate the indirect or spillover effects?
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Partial interference

I The authors assume that there exists no interference across
departments.

I A staff member’s outcome may only be affected by the
treatment status of those from her department.

I This assumption is called “partial interference” by Hudgens and
Halloran (2008).

I We can summarize the effect generated by the other people’s
treatment status with the department level probability of being
treated.

I In this example, it equals to 50% or 0.
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Define the indirect effect
I We can similarly construct the indirect effect generated by unit

j on any other unit i .

I The problem is that we do not want to simply take an average.
I It is hard to identify such an estimand.
I Instead, we can aggregate τi ;j over a specific set of neighbors

of j ’s, Ωj(d), where d is a proximity metric.
I This is a linear mapping from RN to R that captures the

influence of a unit on the others.
I The form of Ωj(d) is decided by the purpose of the study.
I Wang et al. (2025) propose the “circle average:”

Ωj(d) = {i : dij = d}.
I Then, we can define the average marginalized effect generated

by unit j on its neighbors in Ωj(d):
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Estimate the indirect effect
I Finally, our estimand is obtained by averaging over τj(d):

τ(d) = 1
N

N∑
j=1

τj(d).

I We can identify this quantity by constructing the observed
outcome’s circle average:

µj(d) =
∑N

i=1 1{i ∈ Ωj(d)}Yi∑N
i=1 1{i ∈ Ωj(d)}

.

I Then, we can show that

τ(d) = E
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Zjµj(d)
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− 1
N

N∑
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1− pj
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I We can obtain the estimate τ̂(d) by regressing µj(d) on Zj ,
with the weight

wj = Zj
pj

+ 1− Zj
1− pj

.

I If the degree of dependence across units isn’t growing too fast
with the sample size,

√
N(τ̂(d)− τ(d)) converges to a normal

distribution centered around 0.
I By examining τ̂(d) at different values of d , we can see how

spillover effects vary with proximity.
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