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1 Overview

In the last lecture, we discussed the target parameter and identification assumptions in different
linear regression models. In this lecture, we will work with sample data and use it to estimate the
parameter.

2 Algebra of Least Squares

In econometrics, we assume that our data is a random sample from population.

Assumption 1. The random variables {(Y1, X1), ...(Yn, Xn)} are independent and identically dis-
tributed; they are draws from a common distribution P.

Throughout the course, we use the matrix n× k

X =


X11 X12 ... X1k
...

... ...
...

Xi1 Xi2 ... Xik
...

... ...
...

Xn1 Xn2 ... Xnk


to denote the explanatory variables of the sample. Each row is for an individual i, each column is
for each variable Xk. Similarly, the outcome of the sample is the n× 1 vector Y = [Y1, ..., Yn]

T .

To avoid confusion, I will add subscript i to denote the population model. For example, for
the structural linear model, under identification assumptions, the parameter is identified as β =
(E [XiX

′
i])

−1E [XiYi]. Xi is a vector n× 1 containing k independent variables Xi1, ..., Xik.

How should we use data to estimate it? When the parameter θ = E [Y ] is an expectation, we know
that the best estimator is the mean of the sample 1

n

∑n
i=1 Yi. We use the sample moment to replace

the population moment.

Remark 1. Formally, this is the idea of the plug-in estimator. The parameter θ = ψ(P ) is a
function of the distribution. Then, a plug-in estimator is θ̂ = ψ(P̂ ), where P̂ is the empirical
distribution Pn(A) =

1
n

∑n
i=1 I(Xi ∈ A). For example, θ = E [Yi] =

∫
YidP . The plug-in estimator

is θ̂ =
∫
Y dPn = 1

n

∑n
i=1 Yi.

Therefore, for β = (E [XX ′])−1E [XY ], by the plug-in principle, we replace the population estimator
with the sample averages. We obtain the estimator (verify the last equation by yourself)

β̂ = (
1

n

n∑
i=1

XiX
′
i)
−1(

1

n

n∑
i=1

XiYi) = (

n∑
i=1

XiX
′
i)
−1(

n∑
i=1

XiYi) = (X ′X)−1X ′Y.
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Figure 1: From Hansen (2022)

Traditionally, in structural econometrics, people often specify a population criterion function Q :
Θ → R, which is uniquely maximized in the true parameter. The choice of Q and the existence of
θ0 is suggested by the identification of the model. One general way to estimate θ0 is by maximizing
Q̂n, the empirical criterion. Then we get the extremum estimate.

Now, let us apply this for BLP, and we will see why the estimate is called least squares. Recall
β = argminE [(Y −X ′β)2]. By the sample analog, we can define β̂ = argmin 1

n

∑n
i=1(Yi −X ′

iβ)
2.

We call
∑n

i=1(Yi−X ′
iβ)

2 the sum of squared errors, SSE. In other words, the ordinary least squares

(OLS) estimator β̂ is the minimizer of SSE.

We will show summation form and matrix form.

Theorem 2. If
∑n

i=1XiX
′
i > 0, the least squares estimator is unique and equal

β̂ = (
n∑

i=1

XiX
′
i)
−1(

n∑
i=1

XiYi) = (X ′X)−1XY

Proof. Recall, SSE(β) =
∑n

i=1 Y
2
i − 2β′

∑n
i=1XiYi + β′

∑n
i=1XiX

′
iβ

Matrix form: SSE = (Y −Xβ)′(Y −Xβ) = Y ′Y − 2Y ′Xβ + β′X ′Xβ

Take FOC: 0 = −2
∑n

i=1XiYi + 2
∑n

i=1XiX
′
iβ̂. Note that 2

∑n
i=1XiX

′
iβ̂ =

∑n
i=1XiYi is a system

of k equations with k unknowns.

Matrix form: FOC: 0 = −2X ′Y + 2X ′Xβ̂. Then we obtain the least squares normal equation
X ′Xβ̂ = X ′y.

Again, as we prove the coefficient of BLP, we obtain β̂ = (
∑n

i=1XiX
′
i)
−1(

∑n
i=1XiYi) if

∑n
i=1XiX

′
i

is invertible.

Matrix form: we need the inverse of X ′X to exist. Then β̂ = (X ′X)−1XY .

To be complete, we also need SOC: 2
∑n

i=1XiX
′
i is positive definite.

We emphasize the importance of the existence of the inverse of X ′X. We need it for identification
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and estimation. The column of X should be linearly independent and there should be at least K
observations. However, in practice, it is quite easy to attempt to calculate a regression with linearly
dependent regressors. This can occur for many reasons, including the following:

• Including the same regressor twice.

• Including regressors that are a linear combination of one another.

• Including a dummy variable and its square.

• Estimating a regression on a sub-sample for which a dummy variable is either all zeros or all
ones.

• Including more regressors than observations.

3 Least Squares Residuals

The residual is defined as the difference between the true value Yi and the fitted value Ŷi:

êi = Yi − Ŷi = Yi −X ′
iβ̂.

In matrix form, we can write Y = Xβ̂ + ê. Do not confuse with error ei, which is unobservable
while the residual êi is an estimator.

Residual has two important algebraic properties. First,
∑n

i=1Xiêi = 0 (or in the matrix form,
X ′ê = 0). To see this,

n∑
i=1

Xiêi =

n∑
i=1

Xi(Yi −X ′
iβ̂)

=

n∑
i=1

XiYi −
n∑

i=1

XiX
′
iβ̂

=

n∑
i=1

XiYi −
n∑

i=1

XiX
′
i(

n∑
i=1

XiX
′
i)
−1(

n∑
i=1

XiYi)

=

n∑
i=1

XiYi −
n∑

i=1

XiYi

= 0

Second, if Xi contains a constant, the first property implies that 1
n

∑n
i=1 êi = 0 because the first

column in Xi is all 1’s.

In other words, residuals have a sample mean of zero, and the sample correlation between the
regressors and the residual is zero. These are algebraic results and hold for all linear regression
estimates. They are not assumptions.
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Figure 2: Caption

4 Projection

Let us return to Y = Ŷ +ê = Xβ̂+ê. The regressor matrix: X = [X1X2...Xk]. Linear combinations
of columns form a space R(X). If k = 2, then it is a plane. Ŷ = Xβ̂ is in the span of X. In other
words, we want to find a linear combination of X to get Ŷ . The distance between Y and Ŷ is ê.
Recall that we hope that the distance between Y and Ŷ is minimized (min

∑n
i=1(Yi −X ′

iβ)
2). It

turns out that if ê is perpendicular to the space of X (The angle between the vectors Ŷ and ê is
90 degrees), the distance is minimized. We call Ŷ the projection of Y onto R(X).

Now, we hope to find a linear transformation , or, say, orthogonal projection, P such that PY = Ŷ .
We can find it in Ŷ = Xβ̂ = X(X ′X)−1(X ′Y ). Therefore, P = X(X ′X)−1X ′. Intuitively, if
we project X on its own space, we get it: PX = X(X ′X)−1X ′X = X. In addition, P ′ = P
(symmetric) and PP = P (idempotent).

The diagonal elements if the projection matrix is called leverage values for the regressor matrix.
Since

P =


X ′

1

X ′
2
...
X ′

n

 (X ′X)−1(X1 X2 ... Xn)

they are hii = X ′
i(X

′X)−1Xi. From the formula, the leverage value hii is a normalized length of
the observed regressor vector Xi.

We can also find a matrix M such that MY = ê. We call it annihilator matrix, or residual
maker. We can find it by ê = Y − X(X ′X)−1X ′Y = (I − X(X ′X)−1X ′)Y . Therefore, M =
I − X(X ′X)−1X ′ = I − P . Intuitively, any matrix in the R(X) will be annihilated; therefore,
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MX = 0 and MP = PM = 0 (show it). Also, similar to P , M ′ = M(symmetric) and MM = M
(idempotent).

5 Frisch-Waugh-Lovell (FWL)

Partition X = [X1 X2] and β = (β1, β2). The regression model can be written as

Y = X1β1 +X2β2 + e (1)

We are interested in algebraic expressions for β̂1 and β̂2.

We first define M1 = I −X1(X
′
1X1)

−1X ′
1. It is a residual maker where the explanatory variables

are X1. Therefore, M1X2 is a residual matrix in the regression of X2 on X1. Similarly, we define
M2 = I −X2(X

′
2X2)

−1X ′
2.

Theorem 3. (Frisch–Waugh (1933)–Lovell (1963)) The least squares estimator β = (β1, β2) for
(1) has the algebraic solution

β̂1 = (X ′
1M2X1)

−1(X ′
1M2Y )

β̂2 = (X ′
2M1X2)

−1(X ′
2M1Y )

Before we prove it, let us see what it means. For example, we can rewrite

β̂2 = (X ′
2M1X2)

−1(X ′
2M1Y )

= (X ′
2M1M1X2)

−1(X ′
2M1M1Y )

= (X̃ ′
2X̃2)

−1(X̃ ′
2ẽ1)

where X̃2 = M1X2 and ẽ1 = M1Y . This means that the coefficient estimator β̂2 is algebraically
equal to the least squares regression of ẽ1 on X̃2. In other words,

1. Regress Y on X1, obtain residuals ẽ1 (i.e. M1Y )

2. Regress X2 on X1, obtain residuals X̃2 (i.e. M1X2)

3. Regress ẽ1 on X̃2, obtain OLS β̂2 (i.e. regress M1Y on M1X2)

Steps 1 and 2 are commonly called partialing out or netting out the effect of X1. For this reason,
the coefficients in multiple regression are often called partial regression coefficients. This result can
be helpful when interpreting regression coefficients.

Consider regress income on age and education. The coefficient before education captures the pure
effect of education by partialing out the effect of age. Why? Because we can regress income and
education on age and then to compute the residuals from this regression. By construction, age will
not have any power in explaining variation in these residuals. Therefore, any correlation between
income and education after this “purging” is independent of (or after removing the effect of) age.
This is the flavor of ceteris paribus.
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Proof. We first write the normal equation:[
X ′

1X1 X ′
1X2

X ′
2X1 X ′

2X2

] [
β̂1
β̂2

]
=

[
X ′

1Y
X ′

2Y

]
Look at the first row. It is

X ′
1X1β̂1 +X ′

1X2β̂2 = X ′
1Y

Then X ′
1X1β̂1 = X ′

1Y −X ′
1X2β̂2. Premultiplying by (X ′

1X1)
−1, we obtain

β̂1 = (X ′
1X1)

−1X ′
1Y − (X ′

1X1)
−1X ′

1X2β̂2 = (X ′
1X1)

−1X ′
1(Y −X2β̂2) (2)

Then, look at the second row, which is

X ′
2X1β̂1 +X ′

2X2β̂2 = X ′
2Y

We can put β̂1 = (X ′
1X1)

−1X ′
1(Y −X2β̂2) into the equation:

X ′
2X1(X

′
1X1)

−1X ′
1Y −X ′

2X1(X
′
1X1)

−1X ′
1X2β̂2 +X ′

2X2β̂2 = X ′
2Y

After collecting terms, the solution is

β̂2 = [X ′
2(I −X1(X

′
1X1)

−1X ′
1)X2]

−1[X ′
2(I −X1(X

′
1X1)

−1X ′
1)Y ]

= (X ′
2M1X2)

−1(X ′
2M1Y )

Note that from (2), we observe that ifX1 andX2 are orthogonal,X
′
1X=02, then β̂1 = (X ′

1X1)
−1X ′

1Y .
It means that if X1 and X2 are orthogonal, then the coefficient in the multiple linear least squares
regression of Y on X1 and X2 can be obtained by separate regressions of Y on X1 alone and Y on
X2 alone. I hope you can link this with the OVB we mentioned in the last lecture.

Consider an application. Suppose X1 are constant, 1n. Then consider the partition X = [1n X2].
In this case, M1 = In − 1n(1

′
n1n)

−11′n = In − 1n(1/n)1
′
n. Then X̃2 = M1X2 = X2 − X2 and

M1Y = Y − Y are the demeaned variables. The FWL tells us that

β̂2 = (
n∑

i=1

(X2i −X2)(X2i −X2))
−1(

n∑
i=1

(X2i −X2)(Yi − Y ))

You have seen this with one regressor in your homework. The numerator is the covariance of X2

and Y , and the denominator is the variance of X2.

6 Analysis of Variance

The variation of Y contains information. We hope that the variation from X can remove it.
Formally, we ask what the fraction of the sample variance of Y is explained by the least squares
fit. This fraction is called the coefficient of determination, or R-squared. This is a crude measure
of the regression fit.
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Therefore, we need the variance of Y , the variance of X ′β̂. Recall that the variance formula is
V ar(Y ) = 1

n

∑n
i=1(Yi − Y )2.

We start from Y = Ŷ + ê. We first demean.

Y − InY = Ŷ − InY + ê

For the squared term, in the matrix form, we just premultiply the self transpose,

(Y − InY )′(Y − InY ) = (Ŷ − InY )′(Ŷ − InY ) + 2(Ŷ − InY )′ê+ ê′ê

For the middle part, we show that (Ŷ − InY )′ê = 0 assuming that X contains a constant.

(Ŷ − InY )′ê = Ŷ ′ê− Y I ′nê

= (PY )′(MY )− Y (I ′nê)

= Y ′(PM)Y − 0

= 0

Therefore, we obtain

(Y − InY )′(Y − InY ) = (Ŷ − InY )′(Ŷ − InY ) + ê′ê.

We call the LHS, (Y − InY )′(Y − InY ) =
∑n

i=1(Yi − Y )2 the SST, total sum of squares. The first

term of the RHS, (Ŷ − InY )′(Ŷ − InY ) =
∑n

i=1(Ŷi − Y )2 the SSR, regression sum of squares; the
last term, ê′ê =

∑n
i=1 ê

2
i the SSE, error sum of squares. Note that 1

n

∑n
i=1 ê

2
i is the variance of the

residuals.

With those terms, we write
SST = SSR+ SSE

This is commonly called the analysis-of-variance formula for least squares regression. People also
use

TSS = ESS +RSS

TSS: total sum of squares

ESS: explained sum of squares

RSS: residual sum of squares

The R2 is defined as

R2 =
SSR

SST
= 1− SSE

SST
.

We observe that is is a number between 0 and 1, and it measures the proportion of the total variation
in Y that is accounted for by variation in the regressors. Increases when regressors are added to a
regression, so “fit” can always increase by increasing the number of regressors. Therefore, people
also propose adjusted R2. Note that it says nothing about causality.
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