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1 Overview

In social science, we seek to study the causal effects of one or more variables on an outcome
of interest. For example: What is the causal effect of campaign spending on voting behavior?
or What is the causal effect of economic development on democracy? Empirical research uses
data to answer such questions in a systematic and scientific manner. Traditionally, regression has
been the primary tool for this purpose. However, we are currently in a methodological transition
in which traditional statistical methods are increasingly integrated with modern causal inference
frameworks, particularly in political science. Accordingly, in this course, we will study foundational
regression techniques from both statistical and econometric perspectives and combine them with a
causal-inference approach.

Of course, data can also be used to answer other types of questions, such as descriptive and
predictive ones. In this course, however, our primary focus is on causal questions. Prediction
problems are better studied using nonparametric methods and machine-learning techniques, which
will be covered in advanced class like computational social science.

In this lecture, we introduce the overall roadmap of empirical research. We highlight four key
methodological components that researchers must consider: the estimand, identification, estima-
tion, and inference. We then introduce the linear model and clarify the assumptions underlying
four different modeling approaches. This material lays the foundation for the rest of the course.

2 Empirical Studies are Challenging!

Same Data, Different Conclusions

Twenty-nine research teams were given the same set of soccer data and asked to determine if
referees are more likely to give red cards to dark-skinned players. Each team used a different
statistical method, and each found a different relationship between skin color and red cards.
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Figure 1: Cite from https://fivethirtyeight.com/features/science-isnt-broken/



3 Roadmap of Empirical Study

Step 1: Estimand. What is your target parameter of interest? This choice should be driven
by the substantive purpose of the study. The estimand may be the average treatment effect of a
treatment variable on an outcome of interest, or it may be a structural parameter in a regression
model—for example, 1 in the model Y = 8y + 51X + €.

In traditional econometrics, the choice of estimand is often guided by the structure of the data. For
instance, panel data may lead researchers to adopt random- or fixed-effects models, while binary
outcomes often motivate the use of logistic regression. We emphasize, however, that the estimand
should be determined by the underlying scientific question and the research design, rather than by
the data structure alone.

Step 2: Identification. Suppose you have access to infinite data. Under what assumptions can
your estimand be uniquely expressed as a function of the observed data? If this is not possible,
the estimand is not identified, meaning that no amount of data can be used to learn the target
parameter.

Identification necessarily relies on assumptions. Data alone are insufficient to deliver informative
conclusions. For example, suppose we are interested in the causal effect of Z on Y. In an obser-
vational study, the data reveal only the joint distribution of Z and Y. Additional assumptions
are required to use this joint distribution to identify the causal effect of Z on Y. This naturally
raises further questions: Are the identification assumptions substantively meaningful? Do we have
evidence to support them?

As we will see, especially in observational studies, identification assumptions are often difficult
or impossible to test directly. This is why randomized experiments play a central role in causal
inference: they provide a research design in which causal quantities can be identified under relatively
weak and transparent assumptions.

Here, we focus on point identification. There are multiple notions of identification in the literature;
see, for example, the discussion in Lewbel (2019).

Step 3: Estimation. Once the parameter is identified, how should it be estimated? In most
settings, multiple estimators are available. Which one should we use? Not all estimators are
equally appropriate. Ideally, we would like an estimator to possess desirable statistical properties,
such as unbiasedness, consistency, and efficiency. In particular, obtaining an optimal estimator is
not straightforward. Some modern estimation techniques, such as double machine learning, will be
covered in the advanced CSS course.

Step 4: Inference. Statistical analysis inevitably involves uncertainty arising from randomness in
the data or the research design. As a result, we must quantify this uncertainty. Common inferential
tasks include constructing confidence intervals and conducting hypothesis tests.

Different perspectives exist regarding how uncertainty should be understood and quantified. For
example, there is a long-standing debate between frequentist and Bayesian approaches to inference.
Researchers also differ in their views on which sources of randomness should be accounted for.
These differences give rise to distinct inferential paradigms, including sampling-based inference,
design-based inference, and model-based inference.

In this class, we will learn all of these techniques. Have fun!



4 Different Linear Models

In empirical work, researchers often write the same regression equation Y = Sy + X181 + X262 + u,
but this equation can represent different underlying models. We will introduce four such models:
the structural model, the (linear) conditional expectation function (CEF) model, the best linear
projection (BLP) model, and the causal inference reduced-form model. These models differ in their
parameters (estimands), interpretations, assumptions, and in the implications for the properties of
estimators. The material is mainly drawn from Hansen (2022); Wooldridge (2010).

(Y, X) are random variables with a joint distribution F', which we refer to as the population. This
population is assumed to be infinitely large. From F', we randomly draw n observations, forming a
dataset (or sample) {(Y;, X;) : i =1,...,n}. In this lecture, we focus exclusively on the population.
How to use data to learn about the population will be discussed in the next lecture.

Throughout, we assume E[Y?] < oo and E||X||?> < oo, which imply that ¥ and X have finite
means, variances, and covariances.

4.1 Conditional Expectation Function

Because the variables are random, we are mainly interested in the conditional expectation, which
captures the systematic part of the relationship between Y and X = (X1, Xa, ..., X;)T. The condi-
tional expectation E[Y|X = z] = m(z) is a function of x € R*, usually called regression function,
or the regression of Y on X. It states that: “When X takes the value x then the average value of Y’
is m(z).” Sometimes it is useful to view the conditional expectation function (CEF) as a function
of the random variable X, and write it as m(X) or E [Y|X].

The difference between Y and the CEF at X is the CEF error r =Y — m(X). It has conditional
expectation zero,

ElelX] =E[Y —m(X)|X] = E[Y|X] - E [m(X)|X] = m(X) —m(X) =0. (1)

This is sometimes called a conditional mean restriction or mean independence, in the sense
that the conditional mean of e is zero and thus independent of X. However, it does not imply that
the distribution of e is independent of X.

Equation (1) also implies that E [e] = E [E [e| X]] = 0. This result follows directly from the definition
of m(X) as the conditional expectation; it is not an additional assumption.

One important feature of the conditional expectation is that it is the best predictor of Y given X
in the sense that it has the lowest mean squared error among all predictors. Suppose that, given
a random vector X, we want to predict or forecast Y. Any predictor can be written as a function
g(X) of X.

Theorem 1. If E[Y?] < oo, then for any predictor g(X),
E[(Y —g(X))*] 2 E[(Y —m(X))?]

where m(X) =E[Y]X].



Proof. The LHS is

E[(Y - g(X))’]
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Recall, the prediction error is e =Y — m(X). By construction, this yields the formula

Y=m(X)+e (2)

An important special case is when CEF is linear in . We often add a constant 1 in the vector X =
(17X17X27 -"7Xk)7 so that m(X) = /60+X1ﬁ1 +X262++Xk/8k = Xlﬁa where B = (607 617 7616)

In sum, the Linear CEF model is

Y=XB+e, Ele|X]=0

4.1.1 Marginal Effects

We are particularly interested in how changes in X affect Y in expectation, holding other variables
Xo, ..., Xj, fixed. This marginal effect is captured by the partial derivative of the CEF

0
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For a linear CEF, the marginal effect of X is simply 8;. What does this mean? Are marginal
effects causal? Note that a CEF can be defined for any set of variables.

In general, marginal effects need not be causal. A marginal effect from the CEF only describes how
Y changes with one variable while holding the other variables in the regression constant. This is
the notion of ceteris paribus. Whether such an effect is causal depends on additional conditions.
Intuitively, if we could truly hold all other relevant variables constant—including those not included
in the regression—then the ceteris paribus comparison would have a causal interpretation. At this
stage, however, the concept of causality remains vague because we have not yet formally defined a
causal effect. We return to this issue later.

For example, suppose Y is income, X7 is education level. In the regression model, we control
for Xo parents’ education level. In the Linear CEF model ¥ = Sy + X161 + X282 + ¢, b1 is
the marginal effect of education level holding parents’ education level fixed. Is this effect causal?
Generally, no. One concern is omitted variables, such as ability X3: individuals with higher ability
are more likely to obtain higher education and earn higher income. If ability is not controlled for,
an observed association between education and income may reflect ability rather than the causal
effect of education. Suppose ability were observable and included in the regression. Consider the
expanded model Y = v9 + X171 + Xov2 + X373 + e. In general, 71 # (31 (see section 4.2.1). That



is, once we hold both X and X3 constant, the marginal effect of education changes. But does
~v1 now represent a causal effect? Not necessarily, because there may still exist other unobserved
confounding variables beyond ability.

In short, in the linear CEF model, we can interpret the parameter 5; only as the marginal effect of
X}, holding the other variables included in the regression fixed. This marginal effect may not have
a causal interpretation.

4.2 Best Linear Projection

The function form of CEF m(X) = E[Y|X] is typically unknown. However, we can always use a
linear model X’/ to approximate it. How shall we determine 37 A natural objective is to select /3
so that the prediction error is minimized.

We focus on the mean-squared prediction error

S(8) =E[(Y - X'B)%).
Then,  minimizes mean-squared prediction error S(f) called linear projection coefficient, and
such X'j is the best linear predictor of Y given X.
Proposition 2. Suppose E[X X'] is positive definite. The unique Linear projection coefficient is
f=EXX])TEXY].
Proof. S(B) =E[Y?] —2B'E[XY]+ B'E[XX']3. The FOC is

V3S(B) = —2E[XY]+2E[XX'|3=0

= E[XY]=E[XX']3

Because E [ X X'] is invertible implied by positive definite (see remark 1), we obtain 8 = (E[X X'])"'E[XY].
O

We leave SOC for minimization in the remark 2.

Remark 1. E[XX'] is positive definite means that for any non-zero a € RF, o/E[XX']a =
E[(«’X)?] > 0. This implies that there is no non-zero vector a such that o' X = 0. Therefore, X
are linearly independent, and thus invertible.

Remark 2. In the optimization problem min S(3), we also need to check SOC. Suppose [ is one-
dimensional. Then for minimization problem, we need 88—6225(5) > 0. When B is a vector, what
we need is positive definite. To see why, consider the Taylor expansion around optimal 5*, roughly
speaking, S(B* + h) ~ S(B*) + K'VgS(8*) + %h’V%S(B*)h, where VgS(5*) = 0 by FOC, and
h’V%S(,B*)h > 0 by positive definite. Therefore, any deviation from optimal S* will increase the
value. We conclude that positive definite implies that B* is the minimizer.

Similar to the prediction error in the previous section, we can also define the projection error as
e=Y - X'

Note that, projection error is equivalent to the error from CEF (2) when and only when conditional
expectation m(X) is linear.



What are the properties of the projection error? One important property is E [Xe] = 0. You will
prove it in the homework. This is true for all X, E[Xye] = 0. When the regressor vector contains
a constant, say X1 = 1, then E[e] = 0. Therefore, the projection error has mean zero when the
regressors include a constant. This further implies that Cov(X,e) = E[Xe|] —E[X]|E[e] = 0. In
other words, the projection error has zero mean and is uncorrelated with every regressor.

Remark 3. Ele|X] = 0 is stronger than E[Xe] = 0.

In sum, we define the Linear Projection Model:

Y=XB+e, E[Xe]=0, B=(E[XX)'E[XY]

It is useful to understand 8 = (E[X X'])"'E [XY] in the simple linear regression model with one
regressor and one intercept.

Example 1. Consider the simple linear BLP model Y = By + 51X + e. In the homework, you will
solve for 1 = % Therefore, (1 is larger when X1 and Y have a larger covariance, and

when X1 has a smaller variance.

The BLP is often used as a working model, as we will see later. Clearly, there is no causal
interpretation here; it is simply a linear approximation.

4.2.1 Omitted Variable Bias

We show that, given a BLP model, omitting a variable generally changes the projection coefficient.
This difference is known as population omitted variable bias (OVB). The difference is known as
population omitted variable bias (OVB). It is the consequence of omission of a relevant correlated
variable. The term OVB has been used loosely in many areas. Here we emphasize that it refers
specifically to a change in the underlying parameter induced by variable omission.

Consider the long BLP model
Y = X{,Bl +X§ﬁ2 +e

and the short model in which we omit X5

Y = X1 +u

Here, X; and X5 are vectors. In general, 51 # 71, except in special cases. To see this, we calculate

7 = (E[X1X1))'E[X,Y]
= (E[X1X]]))"E [X1(X]B1 + X382 + )]
= fi + (E[X1X7) "B [X1 X2) 52
=1+ T2

What is I'12? It is the coefficient from the projection of X2 on X7 (X2 = X{I'12 + §).

Observe that v1 = 81 + I'1202 is different from 51 unless I'yg = 0 (X3 and Xy are uncorrelated) or
P2 = 0 (X3 is not correlates with Y').



Unfortunately, the above simple characterization of omitted variable bias does not immediately
carry over to more complicated setting.

4.3 Structural Model

When people say that Y = X’8 + e is a structural model, they are claiming that the model
represents a causal relationship, as opposed to one that merely captures statistical associations.
Such a model may be derived from formal theory—such as spatial voting models or principal-agent
theory—or it may be motivated by informal reasoning.

An explanatory variable X is said to be endogenous if it is correlated with e (more precisely,
E [Xe] # 0). In traditional usage, a variable is endogenous if it is determined within the context
of a model. The usage in regression, has evolved to describe any situation where an explanatory
variable is correlated with the disturbance e.

If X; is uncorrelated with e, then it is exogenous. Exogeneity is a strong assumption. It is a
property of random variables relative to parameters of interest. Hence a variable may be validly
treated as exogenous in one structural model but not in another. It may be justified as being a
consequence of a natural experiment or a quasi-experiment in which the value of the variable is
determined by an external intervention; For example, a government or regulatory authority may
set a tax rate or a policy parameter.

We will see in later lectures that endogeneity implies that the (least squares) estimator B does
not converge to the structure parameter as the sample size goes to infinity. In other words, it
is inconsistent for the structural parameter: B — [B* # B. The inconsistency of least squares is
typically referred to as endogeneity bias or estimation bias due to endogeneity.

Note, by definition, the CEF model (E [e|X] = 0) and the BLP (E [eX] = 0) does not suffer from
an endogeneity problem. Therefore, endogeneity problem arises only in structural models.

4.3.1 Source of Endogeneity

The major source of endogeneity arises from omitted variables. Consider the canonical example in
which Y denotes income, X7 is a measure of education, and Xy represents ability. We specify the
structural model as E [Y| X1, Xo] = 8o + 1 X1 + P2X2. Because this is assumed to be a structural
CEF, it implies that

Y =50+ /1 X1+ BeXo+e, Ele|X1,Xo]=0 3)
where e is the structural error. The parameter 5y is the structural parameter of interest, as it
has a causal interpretation by definition. Without loss of generality, assume E [X5] = 0, since an
intercept is included in the model.

However, X5 is unobserved. As a result, we can only work with the projection model

Y =060+ /iX1+u (4)
where u = 32 X9 + €.

It is clear that E[Xju] = E[X1(52X2 + €)] = (E [X1Xo]. If B2 # 0 (ability X has a non-zero
effect on income Y') or E [ X X5] = Cov[X;, Xa] # 0 (ability X, and education X; are correlated),



then an endogeneity problem arises. We may expect 2 > 0 and E[X;X3] > 0. Then, it implies
that projection coefficient 31 in (4) will be upward biased relative to the structural coefficient £; in
(3). Thus least squares (which is estimating the projection coefficient) will tend to over-estimate
the causal effect of education on wages. (I hope you have seen the connection with section 4.2.1.)

Other sources of endogeneity—such as measurement error and simultaneous equations bias—will
be introduced in later lectures.

4.4 Causal Inference (reduced-form) Model

Causal parameters based on counterfactuals provide statistically meaningful and operational defi-
nitions of causality that in some respects differ from the traditional structural model.

We introduce the potential outcomes framework to define causal effects. Let Z; € {0,1} denote the
binary treatment variable for individual i. Let Z = (Z1,...,Z,) denote the treatment assignment
vector for the n individuals in the sample. The potential outcome for individual i is denoted by
Yi(2).

Assumption 3 (No Interference). Individual i’s potential outcomes do not dependent on other
individual’s treatments.

Therefore, we can simplify Y;(Z) to Y;(Z;). In other words, for each individual i, there exists two
potential outcomes: (Y;(1),Y;(0)).

Assumption 4 (Consistency). There are no different forms or versions of each treatment level,
which lead to different potential outcomes.

Therefore, the observed outcome is Y; = Z;Y;(1) + (1 — Z;)Yi(0). If Z; = 1, we observe Y;(1); if
Z; = 0, we observe Y;(0).

People often call Stable Unit Treatment Value Assumption (STUVA) assumption by combing no
interference and consistency assumptions.

The individual treatment effect is 7; = Y;(1) — Y;(0). In a single realized world, we can observe only
one potential outcome for each individual. This is the fundamental problem of causal inference.
Most of the time, we are interested in the average treatment (ATE): 7 = E[Y;(1) — Y;(0)]. This is
a causal quantity under the potential outcome framework.

Under what conditions can we identify the ATE? We introduce some sufficient conditions.
Assumption 5 (Ignorability). Y (z) L Z|X for z =0,1

Remark 4. This assumption has many names: unconfoundedness, selection on observables, con-
ditional independence.

This assumption emphasizes experimental, quasi-experimental, or natural-experimental random-
ization as a key source of identification.

Assumption 6 (Positivity). 0 < P[Z =1|X] < 1

Proposition 7. Suppose STUVA holds. Under assumption 5 and 6, ATE is identified as T =
EE[Y;|Z; =1,X;]] - E[E[Y;|Z; =0, X;]].



Proof.
E[Y;(1)]

E[E[Y;(1)/X,]
E[E[Y;(1)|X;, Z; = 1]] ignorability and positivity
E[EY;|X;, Z; =1]] STUVA

By analogous, E[Y;(0)] = E[E[Y;|X;, Z; = 0]].

Therefore, T = E[E[Y;|X;, Z; = 1]] — E[E[Y:| X5, Z; = 0]].
U

Remark 5. Note that the outer expectation is taken with respect to the marginal distribution of X,
not the conditional distribution of X|Z = 1.

It means that, to identify causal effects, we only need conditional expectations. We do not need a
linear regression function at all. If X is discrete, we can calculate E[Y | Z = 1, X = z] for each x.
However, if X is continuous, we need to rely on a regression function. For example, people often
specify E[Y | Z =1, X] = m(X) = X'B. From here, we connect to regression techniques. We will
return to this topic in later lectures.
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