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Shallow Neural Networks

® Shallow neural networks are functions look like

y = f(X> (Z))
= ¢o + ¢1a(010 + 011x) + P2a(b20 + Oo1x) + P3a(f30 + 031x)

® |t has three parts:

® Linear functions of the input data: 6;p + 6;1x

® Pass them into an activation function: a(-). The most common choice is the rectified
linear unit or ReLU:

0 z<0

z z>0

RelLU(z) = {

® Sum them together with weight ¢;

® The activation function makes function to be nonlinear.
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Shallow Neural Networks
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Figure: Shallow neural networks represent a family of

Figure: ReLU function . . . .
g continuous piecewise linear functions.
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Shallow Neural Networks

e We use h; = a(fjo + 6;1x) to denote hidden units.
® Then, y = ¢o + ¢1h1 + ¢2h2 + ¢3h3
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Figure: [Prince, 2023]
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Depicting Neural Networks

Figure: [Prince, 2023]
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Universal approximation theorem

® Now, consider total D > 0 hidden units:

D
y=¢o+ Y _ ¢aha

d=1
® The number of hidden units in a shallow network is a measure of the network
capacity.
e With RelLU activation functions, the network has at most D joints and so is a
piecewise linear function with at most D 4 1 linear regions.

® Indeed, with enough capacity (hidden units), a shallow network can describe any
continuous 1D function defined on a compact subset of the real line to arbitrary
precision.

® The universal approximation theorem proves that for any continuous function, there
exists a shallow network that can approximate this function to any specified precision.
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Multivariate inputs and outputs

® The model can be generalized to multiple inputs and outputs.

D;
ha = a(fao + »_ Oaixi)
i—1
D
yi=ojo+ Y bjahd
i—1

Hidden layer

Input layer Output layer

® Neural networks have a lot of
associated jargon.

® They are often referred to in terms of

Neuron or
Weight = hidden unit Iayers.
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Universal approximation theorem
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Figure: [Prince, 2023]
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Universal approximation theorem

® There are many versions of the theorem.

® We consider one version that activation function is squashing function
(non-decreasing, limy_,_ a(x) = 0,limy_,c a(x) = 1), for example RelLu.

Let a be a squashing function and K be a compact subset of RY. Then, for every
continuous function f : RY — R and every € > 0, there exists a neural network

Y(x) = o + K, dia(0ao + 0] x) such that sup.cx |F(x) — y(x)| < e.
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Universal approximation theorem

Let a be a squashing function and K be a compact subset of R9. Then, for every
continuous function f : R? — R and every e > 0, there exists a neural network
y(x) = ¢o + Zf'(:l pia(0q0 + 0] x) such that sup,cx |f(x) — y(x)| < e

® The proof has three main steps.

® [irst, we use stone-Weierstrass theorem to show that networks of the form
Ef;l picos(840 + 0 x) are uniformly dense on compacts in the space of continuous
functions.

® Then, we show cosine functions can be approximated in sup norm by networks with
the cosine squasher.

® Finally, we show that netwroks with the cosine squasher can be approximated in sup
norm by networks with an arbitrary sugashing function a.
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Deep neural networks

® Networks with multiple hidden layers are referred to as deep neural networks.

® Deep networks can produce many more linear regions than shallow networks for a
given number of parameters; therefore, can represent a broader family of functions.

O

@’A:@

Figure: Neural network with one input, one output, and two hidden layers, each containing three hidden
units.
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Deep neural networks

The first layer is defined by: 7 ) _ \/\
hi = a[fio+ b117] RTINS N | ETR RS syt gl dly
hy = alfo + 0217] K y X g
hy = alf3 + 0312], s ! M
the second layer by: ° R N B
g) h) i)
hl1 = 3[1[’10 + P11hy + P12ha + 1/113}13] ~ \/\
5 = aftha + P21kt + P2ohe + Pashs) & / \
hiy = a[thso + tharhy + Ys2ha + Ys3hs], ) . ’
Input, x Input, x Input, x
and the output by: ’ i - ’
Y =) + B1h1 + dhhy + gh.
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Deep neural networks

® Modern networks might have more than a hundred layers with thousands of hidden
units at each layer.

The number of hidden units in each layer is referred to as the width of the network.

The number of hidden layers as the depth.

Both deep and shallow networks can model arbitrary functions, but some functions
can be approximated much more efficiently with deep networks.

With enough hidden units, shallow networks can describe arbitrarily complex
functions in high dimensions. However, it turns out that for some functions, the
required number of hidden units is impractically large.

Functions have been identified that require a shallow network with exponentially
more hidden units to achieve an equivalent approximation to that of a deep network.
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Image/Video Data in Social Science

® Fraud in the election during the 1988 presidential election in Mexico: [Cantd, 2019]
applied Convolutional Neural Networks to identify blatant alterations with images of
more than 50,000 vote tallies.

® News and Geolocated Social Media Accurately Measure Protest Size Variation:
[Sobolev et al., 2020] uses CNN identifies protest photos, and then another CNN
identifies faces in that photo. Faces in a protest photo are summed and added per
city-day.

® Decentralized propaganda on Douyin: [Lu et al., 2025] expect a decentralized
propaganda model to produce diverse and original content. To evaluate this, they
assess the similarity of videos produced by accounts at different levels of
administration by using convolutional-neutral-network—based frame-to-frame
video-similarity learning framework, ViSiL.
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Images Data

® |mages have three properties that suggest the need for specialized model architecture.

® First, they are high-dimensional. An image comprises a rectangular array of pixels, in
which each pixel has either a grey-scale intensity or more commonly a triplet of red,
green, and blue channels each with its own intensity value.

® A typical image for a classification task contains 224x224 RGB values (i.e., 150,528
input dimensions).

® So even for a shallow fully connected network, the number of weights would exceed
150,5282, or 22 billion.

® Second, as we mentioned in the first lecture, real informative figure lies in the low
dimension.

® One implication is that nearby image pixels are statistically related. Fully connected
net-works have no notion of “nearby” and treat the relationship between every input
equally.

® Third, the interpretation of an image is stable under geometric transformations. An

image of a tree is still an image of a tree if we shift it leftwards by a few pixels.
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A Typical DNN for Image Classification
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Figure: VGG (Visual Geometry Group) network: 19 hidden layers and 144 million parameters.
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Feature detectors

® For simplicity we will initially restrict our attention to grey-scale images (single
channel).

e Consider a single unit in the first layer of a neural network that takes as input just
the pixel values from a small rectangular region, or patch, from the image.

® We call it as the receptive field of that unit, and it captures the notion of locality.

® The output is z = ReLU(w " x + wp), x is the a vector of pixel values.
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Feature detectors

® We would like weight values associated with this unit to learn to detect some useful
low-level feature.

® Because there is one weight associated with each input pixel, the weights themselves
form a small two-dimensional grid known as a filter, sometimes also called a kernel,
as shown in the previous slide.

® Fix w, wp, and ||x||?, we ask for which value of the input image patch x will this

hidden unit give the largest output response?

® Then the solution for x that maximizes w ' x, and hence maximizes the response of

the hidden unit, is of the form x = aw for some coefficient «.

® This says that the maximum output response from this hidden unit occurs when it

detects a patch of image that looks like the kernel image.

® Because ReLU generates a non-zero output only when w7 x exceeds a threshold of

wo, and therefore the unit acts as a feature detector that signals when it finds a
sufficiently good match to its kernel.
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Feature detectors

® For example, suppose we want to detect edges in images.

® |ntuitively, we can think of a vertical edge as occurring when there is a significant
local change in the intensity between pixels as we move horizontally across the image.

® Therefore, the filters detecting vertical and horizontal edges look like:

11011 —1|1-11-1
11011 01010
=11011 1 111
Figure: 3 x3 filter detecting vertical edges Figure: 3 x3 filter detecting horizontal edges
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Feature detectors

()

Figure: Illustration of edge detection using convolutional filters form [Bishop and Bishop, 2023]

(a) the original image, (b) the result of convolving with the filter that detects vertical
edges, and (c) the result of convolving with the filter that detects horizontal edges.
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Why called Convolution?

aj +bk+ | bj + ck+

alb|c . dl +em el+ fm
1| k
d € f k3 —
I | m ) ;
gl nl i dj + ek+ | ej + fi+
gl + hm hl 4 im
I K c

® Strictly speaking, this operation is called a cross-correlation.
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Padding, Stride, Kernel Size, and Dilation

z8
Size =3 Size =3 Size =5

Stride = 2 Stride = 2 Stride = 1 Stride = 1
Dilation = 1 Dilation =1 Dilation = 1 Dilation = 2

Figure: [Prince, 2023]

Zero padding assumes the input is zero outside its valid range (in a).
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Translation equivariance

e If a small patch in a face image represents an eye at that location, then the same set
of pixel values in a different part of the image must represent an eye at the new
location.

® To achieve this, we can simply replicate the same hidden-unit weight values at
multiple locations across the image.

® For example, we can use the same filter to detect edges in images.

® Therefore, the weighting matrix of convolutional layers are pretty sparse, compared
to fully connected layers.
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Translation equivariance

<)

b) T] Ty Ty Ty Ty Te Ty T3 Ty Ty Te

Figure: The figure shows different connected layer and associated weighting matrix. (C) is a convolutional
layer with kernel size three computes each hidden unit as the same weighted sum of the three neighboring
inputs. (e) is a convolutional layer with kernel size three and stride two computes a weighted sum at every
other position.
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Multi-dimensional Convolutions

® So far we have considered convolutions over a single grey-scale image. For a colour
image there will be three channels corresponding to the red, green, and blue colours.

® \We can easily extend convolutions to cover multiple channels by extending the
dimensionality of the filter.

® An image with J x K pixels and C channels will be described by a tensor of
dimensionality J x K x C.

® \We can introduce a filter described by a tensor of dimensionality M x M x C
comprising a separate M x M filter for each of the C channels.

& (
RGB input, X Hidden layer, H,
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Multi-dimensional Convolutions

® Also, a filter is analogous to a single hidden node in a fully connected network, and it
can learn to detect only one kind of feature and is therefore very limited.

® Hence, it is usual to compute several convolutions in parallel. Each convolution
produces a new set of hidden variables, termed a feature map or channel.
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Multilayer convolutions

® \We have learned that deep networks, which consisted of a sequence of fully
connected layers.

® Similarly, convolutional networks comprise a sequence of convolutional layers.

® The effective receptive field of a unit in later layers in the network becomes much
larger than those in earlier layers.
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Multilayer convolutions

® |ntuitively, multilayer convolutions can learn hierarchical structure, in which complex
features at a particular level are built up from simpler features at the previous level.

Figure: The first layer responding to edges, the second layer responding to textures and simple shapes,
layer 3 showing components of objects (such as wheels), and layer 5 showing entire objects
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® Pooling summarizes the information in a neighborhood.

® Pooling introduces translation invariance, helping models recognize objects even
when they appear in different positions within an image.

® Pooling is not strictly necessary, but historically it has been very effective and

conceptually simple.

®®§®®
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OO
&
|
[0}
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Example network architectures

® Much of the pioneering work on deep learning in computer vision focused on image
classification using the ImageNet dataset (1,281,167 training images, 50,000
validation images, and 100,000 test images).

® |n 2012, AlexNet was the first convolutional network to perform well on this task.

® Pooling summarizes the information in a neighborhood It is not strictly necessary,
but historically it has been very effective and conceptually simple.
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Example network architectures

® The VGG (Visual Geometry Group) network was also targeted at classification in the
ImageNet task and achieved a considerably better performance.

® The most important change between AlexNet and VGG was the depth of the network.

WP

H H JONROS
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Problem Definitions

e Consider a network f[x, ¢] with multivariate input x, parameters ¢, and three hidden

Iayers hl,hg,h32
Note, those are all vectors/matrices. For

h1 = a[Bo + Qox] example, hy is
h2 = alf + ] t10 Y Y2 Y| o
hs = a2 + Qo] he — 2 60 n o1 oo 13 Xl
flx, ¢] = B3 + Q3h3 ! 630 31 Y32 Y33 Xz
010 Va1 Va2 Pa3
Training
QO Ql 92 93 output, y
O 8 o 9 o
o g o ©
©)
Training Hidden Hidden Hidden Output, )
input, x layer, h; layer, hy layer, hy fix, ¢ Loss, ¢
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Gradient Descent

® For supervised learning, we need a loss function L[¢] = Zle I;.

® |oss function is consistent of individual loss terms /;, which return the negative
log-likelihood of the ground truth label y; given the model prediction f[x;, ¢] for
training input x;.

® For example, it might be the least squares loss /; = (f[x;, @] — y;)>.

® The goal is to find parameters ¢ that minimize the loss.

® The simplest method is gradient descent.

35/49



Gradient Descent

e This starts with initial parameters: ¢ = [¢o, ¢1, ..., dn] T
1. Compute the derivatives of the loss with respect to the parameters:

ﬂ_[ﬂ oL A}T
8(;5_ o Ot Odn

2. Update the parameters: ¢;1 < ¢ — a(%
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Gradient Descent

® Consider a simple least squares loss example with two parameters:
I

L[g] = > (flx, ¢] — yi)?

i—1
/
= (b0 + p1xi — i)’
i—1

® The derivative of the loss function can be decomposed into the sum of the
derivatives of the individual contributions:

)
oL ol;
56~ 2= 9
where

oL _ 7y _ |:2(¢0+¢1Xi_}’i) ]
06 |55 2xi(¢po + P1xi — yi)
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Stochastic Gradient Descent

® In DNN, loss function is not that strict convex, which has unique global minimum.

® In other words, loss functions have numerous local minima.

® One issue of basic gradient descent algorithm is that,if we start in a position and use
gradient descent to go downbhill, there is no guarantee that we will wind up at the
global minimum.

® One of the main problems is that the final destination of a gradient descent
algorithm is entirely determined by the starting point.

¢ Stochastic gradient descent (SGD) attempts to remedy this problem by adding
some noise to the gradient at each step. The solution still moves downhill on
average, but at any given iteration, the direction chosen is not necessarily in the
steepest downhill direction.

38/49



Stochastic Gradient Descent

The mechanism for introducing randomness is simple.

At each iteration, the algorithm chooses a random subset of the training data and
computes the gradient from these examples alone.

This subset is known as a minibatch or batch for short. The batches are usually
drawn from the dataset without replacement.

The update rule is

Oli[ 4]
¢

The algorithm works through the training examples until it has used all the data, at
which point it starts sampling from the full training dataset again.

¢t+1<—¢t—az

IeBt

A single pass through the entire training dataset is referred to as an epoch.
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Stochastic Gradient Descent

® SGD adds noise to the process and helps prevent the algorithm from getting trapped
in a sub-optimal region of parameter space.

e Each iteration is also computationally cheaper since it only uses a subset of the data.

® There are many advanced techniques to further improve the SGD: momentum,
Adam, etc.
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Backpropagation Algorithm

® Now, let us go back to DNN, which has far more complicated structure and
parameters.

® The best way to understand is to go through an example.

® Consider a neural network with one input, one output, one hidden unit at each layer,
and different activation functions sin, exp, cos:

flx, @] = B3 + wocos[f2 + waexp[S1 + wasin[fo + wox]]]

® We aim to compute a lot of derivatives with respect to each parameter
. Ol
¢ = {Bo, wo, b1, w1, B2, w2, B3, w3} i, where ¢; € ¢.
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Backpropagation Algorithm

® \We use chain rule to calculate those derivatives.

ov;
awg

= -2 (ﬁ3 + ws - cos [ﬁz + w - exp[B1 + wy - sin[By + wp - zl]]] - yi)
wiwows - T; - cos[Bo + wo - T;] - €xp [,Bl + wy - sin[By + wp - xz]]

-sin {,32 +ws - exp [51 +wy - sin[Bo +wp - Ii]} } .

® Such expressions are awkward to derive and code without mistakes and do not exploit
the inherent redundancy; notice that the three exponential terms are the same.

® Backpropagation Algorithm is an efficient method for computing all of these
derivatives. It consists of

1. a forward pass, in which we compute and store a series of intermediate values and the
network output

2. a backward pass, in which we calculate the derivatives of each parameter, starting at
the end of the network, and reusing previous calculations as we move toward the start.
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Backpropagation Algorithm
OO O O O O O O O

Figure: Backpropagation forward pass.

Forward pass: We treat the computation of the loss as a series of calculations:

fo
h1
fi
ha
fa
hs
fa
£;

Bo +wo -z
sin(fo]
Br+wi-hy
explfi]

B2 +wa - ho
cos(f2]

B3 +ws3 - ha
(f3—wi)>.
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Backpropagation Algorithm

Ohy of1 Ohy f2 Ohg Ofs
@ @GO

Figure: Backpropagation backward pass 1.

Backward pass #1: We now compute the derivatives of ¢; with respect to these inter-
mediate variables, but in reverse order:

0¢; o, ot ot oL 0t and oL, (7.9)
dfs’ Ohy’ Of2’ Ohy’ Ofi" O’ 3fo’ '
The first of these derivatives is straightforward:
o,
2 =2(f3 — y;). 7.10
ofs (fs—w) (7.10)
The next derivative can be calculated using the chain rule:
o0t;  Ofs 0¢;
Bhs ~ Ohs 0f;" (7.11)
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Backpropagation Algorithm

ol;
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Backpropagation Algorithm

Figure: Backpropagation backward pass 2.

Backward pass #2: Finally, we consider how the loss £; changes when we change the
parameters 8, and w,. Once more, we apply the chain rule (figure 7.5):

ot Ofiy 0k
B~ OB Ofk
o6 Of 0t
(“)wk - Bwk 8fk (713)

In each case, the second term on the right-hand side was computed in equation 7.12.
When k > 0, we have fi = S + wy, - by, so:

Ofk _ fs  _
98 1 and o hi. (7.14)

46 /49



Backpropagation Algorithm

® Modern deep learning frameworks such as PyTorch and TensorFlow calculate the
derivatives automatically, given the model specification.

® The backpropagation algorithm computes the derivatives that are used by stochastic
gradient descent.

® There are many other things need to be considered. For example, how to initialize
the parameters.

® Recall, fx = Bk + Qrhk. Imagine we initialize all 3, to zero and elements of

according to a normal distribution with mean zero and variance o2.
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Backpropagation Algorithm

If variance o2 is very small, fi = Bk + Qihy will be a weighted sum of h, where the

weights are very small.

In addition, the ReLU function clips values less than zero, so the range of hy will be
half that of f,_;.

Consequently, the magnitudes of the pre-activations at the hidden layers will get
smaller and smaller as we progress through the network.

Similarly, if variance o is too large, values will get larger.

This may leads to values that cannot be represented with finite precision floating
point arithmetic.

In the backward pass, the gradient magnitude may also decrease or increase
uncontrollably.

These cases are known as the vanishing gradient problem and the exploding
gradient problem respectively.
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