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Overview

1. Partial Linear with LASSO

2. Partial Linear Model in General

3. Generic Debiased (or Double) Machine Learning

4. Doubly Robust Estimator
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Partially Linear Regression Model

• Consider the following partially linear regression model: (PLM):

Y = βD + g(X ) + ϵ, E[ϵ|D,X ] = 0

D = m(X ) + V , E[V |X ] = 0

• Y is the outcome variable, D is the treatment, and X is a high-dimensional vector of
controls.

• β is the main regression coefficient that we would like to infer.

• g(X ) can be fully nonlinear.

• How to identify β and make valid inference?
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Partially Linear Regression Model

• Suppose we learn g(X ) using a random forest. And then, we plug in ĝ(X ), and run
least squares to obtain β̂ from regression model Y = βD + ĝ(X ) + ϵ. (Learn g from
half sample)

Figure: From [Chernozhukov et al., 2024]: Shows the distribution of β̂ − β

• From the figure, we conclude the distribution is biased.
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Review of FWL theorem

• Consider the simple model:
Y = βD + γ′X

where X has dimension p < n.

• β can be estimated partialling-out regression procedure:

1. Regress Y on X , obtain residuals Ỹ = Y − α′
yxX , where αyx ∈ argminE[(Y − α′X )2]

2. Regress D on X , obtain residuals D̃ = Y − α′
dxX , where αdx ∈ argminE[(D − α′X )2]

3. Regress Ỹ on D̃ to obtain β = argminE[(Ỹ − βX̃ )2]
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Double Lasso

• Now consider the linear model with X has high-dimension p ≫ n:

Y = βD + γ′X

.
• How to estimate β and conduct valid inference?
• Note γ the population coefficient defined as mse not lasso type.
• Double Lasso procedure:

1. Run Lasso regression of Yi on Xi , and obtain residuals Ỹi = Yi − α̂′
yxXi , where

α̂yx = argmin
∑

i (Yi − α′Xi )
2 + λ1

∑
j |αj |

2. Run Lasso regression of Di on Xi , and obtain residuals D̃i = Di − α̂′
dxXi , where

α̂dx = argmin
∑

i (Di − α′Xi )
2 + λ2

∑
j |αj |

3. Run least squares regression of Ỹ on D̃ to obtain β̂

We can use standard results from this regression, ignoring that the input variables were
previously estimated, to perform inference about the predictive effect, β.
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Double LASSO

• Good performance of the Double Lasso procedure relies on

1. approximate sparsity of the population regression coefficients: |γyx |(j) ≤ Aj−a and
|γdx |(j) ≤ Aj−a

2. careful choice of the Lasso tuning parameters: λ1 and
λ2 = 2cσ̂

√
nz1−a/2p,whereσ̂ ≈ σ =

√
Eϵ2, which can guarantees that we produce high

quality prediction of Y and D while simultaneously avoiding overfitting under
approximate sparsity.

• Otherwise, we cannot theoretically ensure that first step estimation of Ỹ and D̃ does
not have first-order impacts on β̂.

• Practically, penalty parameter selected via cross-validation can perform poorly in
simulations in moderately sized samples.
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Double Lasso

• We summarize it into the following theorem.

Theorem (Adaptive Inference with Double Lasso in High-Dimensional Regression
[Chernozhukov et al., 2024])

Under approximate sparsity and additional regularity conditions, the estimation error in D̃
and Ỹ has no first order effect on β̂, and

√
n(β̂ − β) ≈

√
n
EnD̃ϵ

EnD̃2
→ N(0,V )

where V = (ED̃2)−1E[D̃2ϵ2](ED̃2)−1

• Just like in the low-dimensional case, we can use these results to construct a

confidence interval. The standard error of β is

√
V̂
n , where V̂ is a plug-in estimator.
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Double Lasso

• In the previous case, β is the target parameter and η = (αyx , αdx) are called nuisance
parameters, with true value η0 = (α0

yx , α
0
dx).

• Nuisance parameters refer to parameters that must be learned or otherwise adjusted
for in order to learn the parameter of interest but are not of direct interest
themselves.

• Note that β̂ depends on the values of nuisance parameters: β̂(η).

• In high-dimensional settings, we use regularization procedures to estimate the
nuisance parameters, which generally results in bias.

• Therefore, η̂ are close to, but not exactly equal to, the true value η0.
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Why partialling-out works?

• The main idea of the Double Lasso approach is that, in the population limit, it
corresponds to a procedure for learning the target parameter β that is first-order
insensitive to local perturbations of the nuisance parameters around their true values
η0

∂ηβ(η
0) = 0

• For now, just treat ∂ as traditional derivative. We will see formal definition later.

• We will call the local insensitivity of target parameters to nuisance parameters as
Neyman orthogonality of the estimation process.

• Neyman orthogonality, which guarantees that the target parameter is locally
insensitive to perturbations of the nuisance parameters around their true values, then
ensures that this bias does not transmit to the estimation of the target parameter, at
least to the first order.
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Why partialling-out works?

• Let us prove ∂ηβ(η
0) = 0.

• Recall from linear regression class, β(η) can be defined as the solution to a moment
equation:

M(β, η) := E[(Ỹ (η)− βD̃(η))D̃(η)] = 0,

and
Ỹ = Y − η′1X , D̃ = D − η′2X

• Then by the implicit function theorem:

∂ηβ(η
0) = −∂βM(β, η0)−1∂ηM(β, η0)

• ∂ηM(β, η0) has two parts, with respect to η1 and η2.
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Why partialling-out works?

• Note, we are working on population moment, rather than sample one; in population,
those nuisance parameter is defined by BLP: E[X (D − α′

dxX )] = 0 and
E[X (Y − α′

yxX )] = 0.

• With respect to η1, i.e.αyx , we have

∂η1M(β, η0) = E[XD̃(η0)] = E[X (D − α′
dxX )] = 0

• With respect to η2, i.e.αdx , we have

∂η2M(β, η0) = −E[XỸ (η0)] + 2E[βXD̃(η0)]

= −E[X (Y − α′
yxX ))] + 2E[βX (D − α′

dxX )] = 0
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Invalid Single LASSO

• Consider the a seemingly sensible approach: Apply Lasso regression of Y on D and
X to select covariates Xα, and then fit the model by least squares of Y on D and Xα.

• The inference will be invalid while the prediction is fine.

• Let us check the Neyman condition.

• The moment condition is M = E[(Y − βD − γ′Xα)D] = 0.

• However, ∂βM(α, β) = E[DXα] ̸= 0, unless D is orthogonal to X (for example, in
the experiment).

• Then, the bias and the slower than parametric rate of convergence (
√
s log(p ∨ n)/n)

of γ′X will transmit to bias and slower than
√
n convergence in estimates of β.
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Invalid Single LASSO

Figure: From [Chernozhukov et al., 2024]
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Partial Linear Model in General

• Consider the following partially linear regression model: (PLM):

y = βD + g(X ) + U, E[U|D,X ] = 0

D = m(X ) + V , E[V |X ] = 0

• Double ML for the Partially Linear Model:

1. Cross-fitting step: Partition data into K folds. For each fold k, compute ML estimators
l̂[k] and m̂[k] of E[Y |X ] and E[D|X ], leaving out the kth block of data. Obtain the
cross-fitted residuals for each i fold k :

Ỹi = Yi − l̂[k](Xi ), D̃i = Yi − m̂[k](Xi )

2. Apply ordinary least squares of Ỹ on D̃. That is, obtain β̂ from the normal equations:
En[(Ỹ − βD̃)D̃] = 1

n

∑n
i=1[(Ỹi − βD̃i )D̃i ] = 0

3. Construct standard errors and confidence intervals as in standard least squares theory.
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Partial Linear Model in General

• Let ||h||L2 :=
√
EX [h2(X )]

Theorem (Adaptive Inference on a Target Parameter in PLM)

Suppose that estimators l̂[k](X ) and m̂[k](X ) provide approximations to the best
predictors l(X ) and m(X ) that are of sufficiently high-quality:

n1/4(||l̂[k] − l ||L2 + ||m̂[k] −m||L2) ≈ 0

Then, under other regularity conditions,

√
n(β̂ − β) ≈

√
n(EnD̃

2)−1EnD̃ϵ→ N(0,V )

, where V = (ED̃2)−1E[D̃2ϵ2](ED̃2)−1
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Remark 1: Neyman Orthogonality by partialling out

• Mathematically, suppose we use naive estimator
β̂ = ( 1n

∑
i D

2
i )

−1 1
n

∑
i Di (Ti − ĝ(Xi ))

√
n(β̂ − β) = (

1

n

∑
i

D2
i )

−1 1√
n

∑
i

DiUi︸ ︷︷ ︸
A

+ (
1

n

∑
i

D2
i )

−1 1√
n

∑
i

m(Xi )(g0(Xi )− ĝ0(Xi ))︸ ︷︷ ︸
B

+ (
1

n

∑
i

D2
i )

−1 1√
n

∑
i

Vi (g0(Xi )− ĝ0(Xi ))︸ ︷︷ ︸
C
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Remark 1: Neyman Orthogonality by partialling out

• Part A: ( 1n
∑

i D
2
i )

−1 1√
n

∑
i DiUi

• It is well-behaved, asymptotically normal, under mild conditions.

• Check the expectation is zero: E[DiUi ] = E[E[DiUi |X ,D]] = E[DiE[Ui |X ,D]] = 0

18 / 44



Remark 1: Neyman Orthogonality by partialling out

• Part B: ( 1n
∑

i D
2
i )

−1 1√
n

∑
i m(Xi )(g0(Xi )− ĝ0(Xi ))

• This part is problematic: Regularization keeps the variance of the estimator from
exploding but also necessarily induces substantive biases in the estimator ĝ0 of g .

• B is the sum of n terms that do not have mean zero, m(Xi )(g0(Xi )− ĝ0(Xi )),
divided by

√
n.

• It will approach 0, but too slowly for our estimator to be
√
n consistent.

• Specifically, this results in the low rate of convergence: g0(Xi )− ĝ0(Xi ) ∝ n−ϕg ,
where ϕg <

1
2 .

• Therefore,
1√
n

∑
i

m(Xi )(g0(Xi )− ĝ0(Xi )) ∝
√
nn−ϕg → ∞

• To solve this problem, we need Neyman Orthogonality.
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Remark 1: Neyman Orthogonality by partialling out

• Neyman Orthogonality controls regularization bias.

• The lack of Neyman orthogonality means that estimates of the parameter of interest
are heavily impacted by estimation of the nuisance parameters.

• Any biases in estimation of g(X ), which are essentially unavoidable in
high-dimensional estimation, create a non-trivial bias in the estimate of the main
effect. This bias is large enough to cause the failure of conventional inference.
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Remark 1: Neyman Orthogonality by partialling out

Figure: [Chernozhukov et al., 2018]. The nuisance parameter is estimated by random forest.

21 / 44



Remark 1: Neyman Orthogonality by partialling out

• Let us now look at DML estimator β̂ = ( 1n
∑n

i=1 D̃i D̃i )
−1 1

n

∑n
i=1 D̃i Ỹi .

• For the ease of exposition, we use a slightly different estimator
β̂ = ( 1n

∑n
i=1 D̃iDi )

−1 1
n

∑n
i=1 D̃i Ỹi , which is asymptotically the same as the above

DML estimator.
• Similarly, we expand and obtain

√
n(β̂ − β) = (

1

n

∑
i

D̃iDi )
−1 1√

n

∑
i

D̃iUi︸ ︷︷ ︸
A

+ (
1

n

∑
i

D̃iDi )
−1 1√

n

∑
i

(m(Xi )− m̂(Xi ))(g0(Xi )− ĝ0(Xi ))︸ ︷︷ ︸
B

+ (
1

n

∑
i

D̃iDi )
−1 1√

n

∑
i

Vi (g0(Xi )− ĝ0(Xi ))︸ ︷︷ ︸
C
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Remark 1: Neyman Orthogonality by partialling out

• Now, look at the B term.

(
1

n

∑
i

D̃iDi )
−1 1√

n

∑
i

(m(Xi )− m̂(Xi ))(g0(Xi )− ĝ0(Xi ))

• It is the product of two small error terms, and thus vanishes more qucikly!
• Again, because we are using regularized ML methods, the converge rates are slow

g0(Xi )− ĝ0(Xi ) ∝ n−ϕg ,where ϕg <
1

2

m0(Xi )− m̂0(Xi ) ∝ n−ϕm ,where ϕm <
1

2
• That is, the root mean squared error√

1
n

∑n
i=1(g0(Xi )− ĝ0(Xi ))2 = ||g0(Xi )− ĝ0(Xi )||L2 = op(n

−ϕg ) etc.

• It will be upper bounded by
√
nop(n

−(ϕm+ϕg )).
• if ϕm + ϕg ≥ 1

2 , it is op(1), then this part can be ignored.
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Remarks 2: Cross-fitting

• The DML algorithm also uses a form of sample splitting, called cross-fitting, to guard
against a less obvious source of bias that may arise when estimation of nuisance
parameters results in overfitting.

• Heuristically, overfitting simply means that an estimator has captured not just
generalizable signal, but also noise that is idiosyncratic to each observation.

• Cross-fitting guards against this source of bias, as overfitting resulting from learning
nuisance functions in one subsample will not carry over when the nuisance function
estimates are applied in a different, separate subsample.
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Remarks 2: Cross-fitting

Figure: [Chernozhukov et al., 2018]. This figure illustrates how the bias resulting from overfitting in the
estimation of nuisance functions can cause the main estimator to be biased and how sample splitting
completely eliminates this problem.

25 / 44



Remarks 2: Cross-fitting

• Note that we did not make use of cross-fitting in previous Double-lasso because the
plug-in tuning choice λ theoretically guarantees that overfitting is sufficiently
well-controlled that sample splitting is not required.

• Such refined and theoretically rigorous choices of tuning parameters are not yet
available for other machine learning methods.

• Indeed, even when using Lasso, crossfitting should be employed if cross-validation,
rather than the theoretical plug-in, is used for selecting λ.
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Remarks 2: Cross-fitting

• Look at the C term; no matter whether we use partialling-out or naive method, it
remains the same (ignore the inverse term, this part converges):

1√
n

∑
i

Vi (g0(Xi )− ĝ0(Xi ))

• We hope this part will vanish. But when will this term do not vanish?

• We will see that this will happen when Vi and g0(Xi )− ĝ0(Xi ) are correlated. For
example, when ĝ0 is overfit, it will fit parts not explained by Xi in the outcome model.

• For example, we assume ĝ0(Xi ) = g0(Xi ) +
Yi−g0(Xi )

n1/2−ϵ . The second term is the overfit.

• Note that this estimator is not bad; it converges to g0(Xi ) at a nearly parametric
rate n1/2−ϵ.
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Remarks 2: Cross-fitting

• However, even with this fast rate, the slight overfit will make C term explode.

1√
n

∑
i

Vi (g0(Xi )− ĝ0(Xi )) =
1√
n

∑
i

Vi (
Yi − g0(Xi )

n1/2−ϵ
)

=
1√
n

∑
i

Vi (
βDi + Ui

n1/2−ϵ
)

• Note E[ViDi ] = E[E[(Di −m(Xi ))Di |Xi ]] = E[Var(Di |Xi )] := c ; Then nϵβc explodes.

• The remaining term will explode as well if we do not control enough X to remove

endogeneity; but now is fine: E[ViUi ] = Op(
√
n), then nϵ−1Op(

√
n) = Op(n

ϵ− 1
2 ) will

go to zero for small ϵ.
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Remarks 2: Cross-fitting

• Now, let us see the magic of cross-fitting.
• Consider the simple case in which we split two sets:I and I c .
• We use IC to denote the auxiliary set where we estimate ĝ IC (X ), and the remaining
evaluation set I to estimate β̂

• We WTS that conditional expectation of C term for those on the evaluation set I is
0.

E[C I |IC ] = 1√
|I |

∑
i∈I

E[E[Vi (g0(Xi )− ĝ IC
0 (Xi )|IC ,Xi ]|IC ]

=
1√
|I |

∑
i∈I

E[(g0(Xi )− ĝ IC
0 (Xi )E[Vi |IC ,Xi ]|IC ]

=
1√
|I |

∑
i∈I

E[(g0(Xi )− ĝ IC
0 (Xi )E[Vi |Xi ]|IC ]

= 0

• Therefore, unconditionally, it is mean 0 as well.
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Remarks 2: Cross-fitting

• That is great! But does it go to zero quickly enough?

• We use the Chebyshev inequality: P[|C I | > t] ≤ E[(C I )2]
t2

, and show that the
numerator converges to 0.

• We check the variance. Suppose supx Var(Vi |Xi ) ≤ B. (We ignore some technical
details; only sketch the logic.)

Var(C I |IC ,Xi ) =
1

|I |
∑
i∈I

(g0(Xi )− ĝ IC
0 (Xi ))

2Var(Vi |Xi )

≤ B
1

|I |
∑
i∈I

(g0(Xi )− ĝ IC
0 (Xi ))

2

= Bop(n
−2ϕg )

→ 0
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DML

• We consider estimate and conduct inference based upon a method-of-moments
estimator for some low-dimensional parameter θ0:

E[ψ(W ; θ0, η0)] = 0

• η0 is an infinite-dimensional nuisance parameter.
• Suppose we use data and any (ML) methods get η̂n; then plug in and solve θ̂ from
sample analogue

1

n

n∑
i=1

ψ(W ; θ̂n, η̂n) = 0

• The problem is that the bias of η̂n will affect θ̂.
• η̂0 must be heavily regularized in high-dimensional settings, so these estimators will
be biased in general.

• Moreover, θ̂ is not an average of iid data (because of η̂n). The distribution is
complicated.

• Is it possible that we can conduct valid inference for θ by ignoring η̂n?
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DML

• Many common problems can be seen as a method of moment problem.

• For example, linear regression model yi = x ′iβ + ei ,E[xiei ] = 0 can be written as

E[xi (y − x ′iβ)] = 0

• For example, recall the outcome regression estimator, average treatment effects τ
can be solved by

E[µ1(Xi )− µ0(Xi )− τ ] = 0

• Also, recall AIPW, we can also use it to solve τ :

E[µ1(Xi )− µ0(Xi ) + Zi
Yi − µ1(Xi )

π(Xi )
− (1− Zi )

Yi − µ0(Xi )

1− π(Xi )
− τ ] = 0
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DML

• Is it possible that we can conduct valid inference for θ by ignoring η̂n?

• The answer is yes, if using DML.

• There are three key ingredients of DML estimation and inference.

• First ingredient: Neyman orthogonality condition.

• Using a Neyman orthogonal score eliminates the first-order biases arising from the
replacement of η0 with an ML estimator η̂0:

d

dt
E[ψ(W ; θ0, η0 + t(η − η0))|t=0 = 0

• I sometimes use superscript 0 to denote the true value of a parameter if the
parameter already has subscript. For example, µ01 is the true parameter of µ1.
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DML

• Let us check moment for partial linear model : E[(Y − βT − g(X ))T ] = 0

• It is easy to see that

d

dt
E[(Y − β0T − g0(X )− t(g(X )− g0(X ))T ]|t=0 = E[(g(X )− g0(X ))T ] ̸= 0

• But residual regression satisfies the Nyeman Orthogonality condition.

• Also, for outcome regression estimator:

d

dt
E[µ01 + t(µ1 − µ01)− µ00 − t(µ0 − µ00)− τ ]|t=0 = E[µ1 − µ01] + E[µ0 − µ00]

• But we know, in general, outcome regressions with ML are biased.
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Neyman orthogonality

• Check that for AIPW, it satisfies the Nyeman Orthogonality condition.

• For AIPW, ψ = µ01(X )− µ00(X ) + Z
π0(X )(Y − µ01(X ))− 1−Z

1−π0(X )(Y − µ00(X ))− τ

• We check terms separately. To simplify the notation, we use ∆∗ to denote the
deviation from the true value ∗ = {µ1, µ2, π}.

• For the first outcome regression term:

d

dt
E[µ01(X ) + t∆µ1 − µ00(X )− t∆µ0 ]t = 0 = E[∆µ1 −∆µ0]

• For the second part:

d

dt
E[

Z

π0(X ) + t∆π
(Y − µ01(X )− t∆µ1)]|t=0

= E[− Z∆π

π20(X )
(Y − µ01(X ))− Z

π0(X )
∆µ1 ]
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Neyman orthogonality

• Similarly, the third part is

E[
(1− Z )∆π

(1− π0(X ))2
(Y − µ00(X ))− 1− Z

1− π0(X )
∆µ0 ]

• Combine terms together according to the way we show AIPW is robust, then it is
easy to show each part is unconditionally zero by conditional mean.

• For example, E[∆µ1(1− Z
π0(X ))|X ] = 0.

• I leave you to check E[− Z∆π

π2
0(X )

(Y − µ01(X ))] = 0.
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DML

• Secondly, using high-quality machine learning estimators of nuisance parameters. A
sufficient condition in the examples given includes the requirement
n1/4||η̂ − η0||L2 ≈ 0.

• Third, using sample splitting were nuisance functions are estimated on different data
than are used in their evaluation when producing the estimator of the main
parameter θ0. This avoids biases arising from overfitting.

• To be efficient, in practice, we are using cross-fitting:

1. Split data into K = 5 or 10 folds: I1, ..., IK , with equal size N.
2. For each k, obtain η̂kn by using the remaining k − 1 folds.
3. Solve θ̂ by

1

K

K∑
k=1

1

N

∑
i :Ik

ψ(Wi ; θ, η̂
k
n ) = 0
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AIPW

• Now, Let us go back to show the strong double robustness result of AIPW, follow
[Wager, 2024].

• Recall, we want to say that τ̂AIPW is asymptotically normal even if outcome
regression and propensity score converges slowly.

• The variance is V = Var(τ(Xi )) + E[ σ2
0(Xi )

1−π(Xi )
] + E[σ

2
1(Xi )
π(Xi )

].

• Consider the oracle AIPW estimator τ∗AIPW = 1
nΓi , where

µ1(Xi )− µ0(Xi ) + Zi
Yi − µ1(Xi )

π(Xi )
− (1− Zi )

Yi − µ0(Xi )

1− π(Xi )

Proposition

Under STUVA, unconfoundedness and strong overlap, the oracle AIPW estimator has
distribution √

n(τ̂∗AIPW − τ) →d N(0,V ),

where V = Var(τ(Xi )) + E[ σ2
0(Xi )

1−π(Xi )
] + E[σ

2
1(Xi )
π(Xi )

].
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AIPW

• To establish strong double robustness, we just WTS that τ̂AIPW is asymptotically
equivalent to oracle AIPW estimator τ̂∗AIPW .

• Formally,
√
n(τ̂AIPW − τ̂∗AIPW ) → 0.

• To obtain this property, you may expect we need cross-fitting, as we did before.

• Say we split data into two halves I1 and I2.

• Then τ̂AIPW = 1
n [|I1|τ̂

I1 + |I2|τ̂ I2 ], and

τ̂ I1 =
1

n

n∑
i=1

(µ̂I21 (Xi )− µ̂I20 (Xi ))

+
Zi (Yi − µ̂I21 (Xi )

π̂I2(Xi )
−

(1− Zi )(Yi − µ̂I20 (Xi )

1− π̂I2(Xi )
]

• In other words, τ̂ I1 is a treatment effect estimator on I1 that uses I2 to estimate its
non-parametric components, and vice-versa.
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AIPW

Theorem (Strong Double Robustness)

Under STUVA, unconfoundedness and strong overlap, cross-fitting, and, with the roles of
I1 and I2 swapped

1

|I1|
∑
i∈I1

(µ̂I2z (Xi )− µz(Xi ))
2 = op(n

−2ϕµ)

1

|I1|
∑
i∈I1

(
1

π̂I2(Xi )
− 1

π(Xi )
)2 = op(n

−2ϕπ)

for some ϕµ + ϕµ ≥ 1/2. Then, strong double robustness holds.
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AIPW

• Let m̂I1
1 = 1

|I1|
∑

i∈I1(µ̂
I2
1 (Xi ) +

Zi (Yi−µ̂
I2
1 (Xi )

π̂I2 (Xi )
); similarly for m̂I1

0

• See that τ̂ I1 = m̂I1
1 − m̂I1

0 .

• For oracle τ̂∗AIPW = 1
n [|I1|τ̂

I1,∗ + |I2|τ̂ I2,∗] = m̂I1,∗
1 − m̂I1,∗

0

• Therefore, we only need to show
√
n(m̂I1

1 − m̂I1,∗
1 ) →p 0.

• Check each term of the difference

m̂I1
1 − m̂I1,∗

1 =
1

|I1|
∑
i∈I1

[(µ̂I21 (Xi )− µ1(Xi ))(1−
Zi

π(Xi )
)]

+
1

|I1|
∑
i∈I1

Zi [(Y1 − µ1(Xi ))(
1

π̂I2(Xi )
− 1

π(Xi )
)]

− 1

|I1|
∑
i∈I1

Zi [(µ̂
I2
1 (Xi )− µ1(Xi ))(

1

π̂I2(Xi )
− 1

π(Xi )
)]
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• See the first term 1
|I1|

∑
i∈I1 [(µ̂

I2
1 (Xi )− µ1(Xi ))(1− Zi

π(Xi )
)].

• Thanks to cross-fitting, for i ∈ I1, µ̂
I2
1 is fixed.

• Conditional on I2,Xi , this term is the average of mean-zero terms.
• And similarly, we check the variance going to zero, and then use Chebyshev’s
inequality to show the first term is op(1

√
n).

• Let us use the same tower property of expectation:

Var [
1

|I1|
∑
i∈I1

[(µ̂I21 (Xi )− µ1(Xi ))(1−
Zi

π(Xi )
)]|I2,Xi ]

=
1

|I1|2
∑
i∈I1

E[(µ̂I21 (Xi )− µ1(Xi ))
2(1− Zi

π(Xi )
)2|I2,Xi ]

=
1

|I1|2
∑
i∈I1

1− π(Xi )

π(Xi )
(µ̂I21 (Xi )− µ1(Xi ))

2

≤ op(
1

n1+2ϕµ
)
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• For the last term, we use Cauchy-Schwarz inequality.

1

|I1|
∑
i∈I1

[(µ̂I21 (Xi )− µ1(Xi ))(
1

π̂I2(Xi )
− 1

π(Xi )
)]

≤
√

1

|I1|
∑
i∈I1

(µ̂I21 (Xi )− µ1(Xi ))2
√

1

|I1|
∑
i∈I1

(
1

π̂I2(Xi )
− 1

π(Xi )
)2

= op(
1

nϕµ+ϕπ
)

• That all we need to let this term is also op(1
√
n).
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