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Basic RDD

• Sharp RDD: the binary treatment variable Di ∈ {0, 1} for individual i is assigned
based on a running variable Xi in a sharp way: Di = 1[Xi ≥ c].

• The estimand from the continuity framework is E[Yi (1)− Yi (0)|Xi = c].

Assumption

The conditional mean of the potential outcomes E[Y (t)|X = x ] for t ∈ {0, 1} are
continuous at the cutoff level c.

• τRD = limx↓c E[Yi |Xi = x ]− limx↑cE[Yi |Xi = x ]

• Estimation via local linear regression:
τ̂RD = argminτ{

∑n
i=1 Kh(Xi − c)(Yi − a− τDi − β0(Xi − c)− − β1(Xi − c)+)

2},
where Kh(x) =

1
hK ( xh ) is the kernel function and hn is the bandwidth.

• Note that there are multiple ways to express the objective function.
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RDD with Many Covariates

• In the lower dimension case, we can simply add covariates Zi ∈ Rp linearly to the
objective function to increase the efficiency.

τ̂RD = argminτ{
n∑

i=1

Kh(Xi − c)(Yi − a− τDi − β0(Xi − c)− β1Di (Xi − c)− γ′Zi )
2}

• Suppose we transform the outcome variable Ỹ = Yi − ZT
i γ̂h, where γ̂h is the vector

of linear projection coefficients from previous function; then,

τ̂ lin = argminτ{
n∑

i=1

Kh(Xi − c)(Ỹ − a− τDi − β0(Xi − c)− β1Di (Xi − c))2}

τ̂ lin = τ̂RD is consistent to τRD if the conditional distribution of the regressors given
the running variable varies smoothly around the cutoff.

• The variance of the linear adjustment estimator is asymptotically smaller than
unadjusted one.
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RDD with Many Covariates

• In the high-dimensional case, a natural choice is to use LASSO select relevant
covariates and then run local linear RDD [Kreiss and Rothe, 2023].

• For simplicity, we use V to denote (1,Di ,Xi − c ,Di (Xi − c)), and θ = (a, τ, β0, β1).
• The post-lasso RDD procedure:

1. Using a preliminary bandwidth b and a penalty parameter λ, one solves a Lasso version
of the local linear regression defining the RDD estimator by adding a penalty term to
obtain preliminary estimates:

n∑
i=1

Kb(Xi − c)(Ỹ − V T
i θ − (Zi − µ̂Z )γ)

2}+ λ

p∑
i=1

ω̂k |γk |,

where µ̂Z = 1
n

∑n
i=1 ZiKi (Xi − c), and ω̂2

k = b
n

∑n
i=1(Kb(Xi − c)Z

(k)
i − µ

(k)
Z )2 are the

local sample mean and variance, respectively, of the covariates.
2. Let Ĵ denote the set of indices of those covariates whose first step Lasso estimates are

non-zero. Using it and final bandwidth h to estimate τ .
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RDD with Many Covariates

• Recall that, in the lower-dimensional case, τ̂RD is asymptotically equivalent to
running a local linear RDD regression with a modified outcome variable Yi − Z ′

i γ.

• A natural extension is to consider Yi − η0(Z
′
i ) for the potentially non-linear function

η0, which can be connected to DML.

• That is, by sample spiting, one estimates any η̂(Z ) and compute a local linear ”no
covariates” RDD estimator that uses the adjusted outcome.
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Linear IV

• Consider SEM, for example Y is income, D is schooling, A is unobserved ability, Z is
IV (distance to college, birth quarter, etc.), X is observed controls,

Y = αD + δA+ fY (X ) + ϵY

D = βZ + γA+ fD(X ) + ϵD

Z = fZ (X ) + ϵZ

A = fA(X ) + ϵA

X = ϵX
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Partial linear IV

• We apply partialling-out: Ṽ = V − E[V |X ], and have a simplified system

Ỹ = αD̃ + δÃ+ ϵY

D̃ = βZ + γÃ+ ϵD

Z̃ = ϵZ Ã = ϵA

• To identify α, we use moment E[(Ỹ − αD̃)Z̃ ] = 0 (exclusion restriction).

• Then, we obtain our old friend α = E[Ỹ Z̃ ]

E[D̃Z̃ ]
(assuming relevance).

• Note that α is Neyman orthogonal to the nuisance parameters E[Y |X ], E[D|X ],
E[Z |X ]; therefore, we can use DML.
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DML Partial linear IV
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Nonlinear IV: LATE

• Consider the setup of causal inference with binary treatment D and binary
instrument Z .

• We know that IV can be used to identify local ATE (ATE for compilers):
E[Yi (1)− Yi (0)|Di (1) > Di (0)] under assumptions:
1. Randomization: Z ⊥⊥ {D(1),D(0),Y (1),Y (0)}
2. Monotonicity: Di (1) ≥ Di (0) for all i ; there are no defier.
3. Exclusion restriction: Yi (1) = Yi (0) for always takers and never takers.

• It can be identified by τLATE = E[E[Y |Z=1,X ]−E[Y |Z=0,X ]]
E[E[D|Z=1,X ]−E[D|Z=0,X ]]

• To use DML, we can derive the orthogonal score function. We define three nuisance
parameters:µ(Z ,X ) = E[Y |Z ,X ],m(Z ,X ) = E[D|Z ,X ], and π(X ) = E[Z |X ].

• The orthogonal score function is similar to two AIPW’s:

ψ = µ(1,X )− µ(0,X ) + H(π)(Y − µ(Z ,X ))

− [m(1,X )−m(0,X ) + H(π)(Y − µ(Z ,X ))]τLATE

where H(π) = Z
π(X ) −

1−Z
1−π(X ) .

10 / 23



Optimal IV

• Recall that we can use GMM to perform IV regression.

• For a general linear model, yi = Xiβ + ui , the moment condition is
E[Z ′

i ui ] = E[Z ′
i (yi − Xiβ)] = 0.

• The sample analogue is 1
N

∑N
i=1 Z

′
i (yi − Xi β̂) = 0.

• And β̂ = ( 1
N

∑N
i=1 Z

′
iXi )(

1
N

∑N
i=1 Z

′
i yi ) for just identification.

• For over-identification, GMM solves

min
b
[
N∑
i=1

Z ′
i (yi − Xiβ)]

′Ŵ [
N∑
i=1

Z ′
i (yi − Xiβ)]

where Ŵ is a positive semidefinite weighting matrix.

• The solution is
β̂GMM = (X ′ZŴZ ′X )−1(X ′ZŴZ ′X )
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Optimal IV

• Suppose Ŵ = (Z
′Z
N )−1, then β̂2sls = [X ′Z (Z ′Z )−1Z ′X ]−1X ′Z (Z ′Z )−1Z ′Y is the

2SLS estimator.

• A natural question is how to choose the optimal weighting matrix.

• Look at the asymptotic variance:

Avar [
√
N(β̂GMM − β)] = (Q ′WQ)−1Q ′WΩWQ(Q ′WQ)−1

where Ω = E(ZiZ
′
i u

2
i ) = Var(Z ′

i ui ), and Q = E[ZiX
′
i ].

• To minimize it, we can choose W = Ω−1 so that it becomes (Q ′ΩQ)−1.

• To estimate Ω, we first use β2sls to get residual ûi , and then construct Ω̂ using the
sample analog.

• Also note that under homoscedasticity case E[u2i |Zi ] = σ2, the weighting matrix for
2SLS and GMM is the same, and thus 2SLS is efficient.
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Optimal IV

• If we use the optimal weighting matrix Ŵ , then adding more instruments will not
hurt us.

• Consider a slightly stronger conditional moment restriction: E[ui |Zi ] = 0.

• If Z is a valid IV, then we can construct infinitely many IVs based on it: any
non-linear function of Z .

• Now, we ask what is the optimal set of instrumental variables?

• One solution is to construct an infinite list of potent instruments and then use the
first k.

• Another approach is to construct an optimal instrument that minimizes asymptotic
variance.

• It turns out that the optimal IV is
Z ∗
i = [Var(ui |Zi )]

−1E[Xi |Zi ] = [E(u2i |Zi )]
−1E[Xi |Zi ].

• Then, we do not need a weighting matrix to solve
∑N

i=1 Z
∗
i (yi − Xi β̂) = 0.
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Optimal IV

• Let us assume homoscedasticity so that we ignore the inverse term in the optimal IV
formula.

• To obtain an optimal IV, people may try to estimate E[Xi |Zi ], then solve the IV
estimator.

• It may suffer from overfitting bias.

• The main problem is that if E[Xi |Zi ] is fitted on the training data, then the
estimated optimal IV is a function of Xi , which is correlated with ui .

• In other words, the optimal IV estimated for each i , is correlated to ui .

• Therefore, we should use cross-fitting to address this issue.
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Optimal IV

• We introduce the optimal IV results by LASSO as follows [Belloni et al., 2012].

• We still focus on the homoskedastic case.

• Suppose that there is a very large list of instruments Zi1, ...,Zik , and
E[Xi |Zi ] = Z ′

iα0, where β0 is sparse.

• Then, using LASSO / post-LASSO to estimate the predicted X̂i = Z ′
i α̂0

lasso , and
then obtain the resulting IV estimator.

• Under several lasso-similar conditions, the above estimator achieves the efficiency
bound asymptotically (as the optimal IV).

• In the presence of heteroscedasticity, the above IV estimator continues to be
√
n

consistent and asymptotically normal.
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Proxy Controls

• Suppose that we observe some
proxies Q (test scores or grades
in the early period) and S (test
scores or grades in later period)
of unobserved ability:

Y = αD + δA+ ιS + fY (X ) + ϵY

D = γA+ βQ + fD(X ) + ϵD

Q = ηA+ fQ(X ) + ϵQ

S = ϕA+ fS(X ) + ϵS

A = fA(X ) + ϵA

X = ϵX
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Proxy Controls

• Similarly, we apply partialling-out,

Ỹ = αD̃ + δÃ+ ιS̃ + ϵY

D̃ = γÃ+ βQ̃ + ϵD

Q̃ = ηÃ+ ϵQ

S̃ = ϕÃ+ ϵS

Ã = ϵA

• Via substitution (Ã = S̃−ϵS
ϕ ), we obtain Ỹ = αD̃ + δS̃ + U, where U = −δϵS

ϕ + ϵY

and δ = ι+ δ
ϕ .

• Note that E[UD̃] = E[UQ̃] = 0.

• Therefore, we can use Q̃ as an IV for S̃ and thus identify α.
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Canonical DID

• In the simplest two periods DID, we use Yt(d) to denote potential outcomes for
d = 0, 1 and t = 1, 2.

• To identify ATET E[Y2(1)− Y2(0)|D = 1], we rely on two assumptions.

Assumption (Parallel Trends)

E[Y2(0)− Y1(0)|D = 1] = E[Y2(0)− Y1(0)|D = 0]

• Parallel trends assumption requires that, in expectation, the change in control
potential outcomes among the treatment group is the same as the change in the
control potential outcomes among the control group.

• It is important to mention that it is actually functional form dependent (additively
separable). It will not hold if you make a non-linear transformation of Y.
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Canonical DID

Assumption (No Anticipation)

E[Y1(0)|D = 1] = E[Y1(1)|D = 1]

• No Anticipation imposes that receipt of treatment at t = 2 does not impact average
period 1 potential outcomes.

• The identification is straightforward:

ATET = E[Y2(1)− Y2(0)|D = 1]

= E[Y2(1)|D = 1]− E[Y2(0)|D = 1]

= E[Y2(1)|D = 1]− {E[Y1(1)|D = 1] + E[Y2(0)− Y1(0)|D = 0]}
= E[Y2(1)− Y1(1)|D = 1]− E[Y2(0)− Y1(0)|D = 0]
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Canonical DID

• To estimate, we can estimate conditional means: θ̂s(d) =
En[Y 1[D=d ,t=s]]
En[1[D=d ,t=s]] , and

α̂ := ÂTET = (θ̂2(1)− θ̂1(1))− (θ̂2(0)− θ̂1(0)).

• A numerically equivalent estimator can be obtained through regression:

Y = β0 + β1D + β2T + αDT + ϵ
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DML DID

• In practice, it is more likely to satisfy conditional parallel trends

Assumption (Conditional DID)

E[Y2(0)− Y1(0)|D = 1,X ] = E[Y2(0)− Y1(0)|D = 0,X ] a.s.

and
E[Y1(0)|D = 1,X ] = E[Y1(1)|D = 1,X ] a.s.

• Now, we have high-dimensional nuisance parameters to be estimated.
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DML DID

• The Neyman orthogonal score function is

ψ(W ;α, η) =
D −m(X )

p(1−m(X ))
(Y2 − Y1 − g(0,X ))− D

p
α,

where the true value for nuisance parameters are p0 = E[D],m0(X ) = E[D|X ], and
g0(0,X ) = E[Y2 − Y1|D = 0,X ].

• So, as usual, we use partition data into K folds and estimate nuisance parameters,
p̂,ĝ ,and m̂. And then construct score function ψ̂ and estimate α̂ using sample
analogue of the moment condition En[ψ̂(Wi , α, η̂)] = 0.
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