
Tree-based Methods and Boosting
PS690 Computational Methods in Social Science

Jiawei Fu
Department of Political Science

Duke University

Sep 9, 2025

1 / 24

Overview

1. Tree-based Methods

2. Bagging

3. Random Forests

4. Boosting

2 / 24

Decision Trees

• The linear methods we have studied are not well suited to capturing the underlying
nonlinear relationships between the response and the predictors.

• We also want to allow for interactions among the predictors.

• Although we can add higher-order terms and interaction terms in a linear model, we
prefer to let the data itself reveal the appropriate structure.

• A popular class of models is tree-based methods.

3 / 24

Building a Tree

• Our general goal: Divide the predictor space (X1,X2, ...,Xp) into J distinct regions
and make one prediction for each region.

• Formally, we hope to find regions R1, ...,RJ that

min
J∑

j=1

∑
i∈Rj

(yi − ŷRj
)2

• Unfortunately, it is computationally infeasible to consider every possible partition of
the feature space into J boxes.

• Solution: Top-down, greedy approach, known as recursive binary splitting
• Top-down: begins at the top of the tree
• Greedy: the best split is made at the local step

4 / 24

Classification and Regression Trees (CART)

• We select a predictor Xj and cut point s, splitting the predictor space into two regions

R1(j , s) = {X |Xj < s} and R2(j , s) = {X |Xj ≥ s}

• Q: Which variable is to be split? and What is the criterion to split?

• Objective function:

min
j ,s

[min
c1

∑
i :xi∈R1(j ,s)

(yi − c1)
2 +min

c2

∑
i :xi∈R2(j ,s)

(yi − c2)
2]

• Given j , s, it is clear that ĉk = En[yi |xi ∈ Rk(j , s)] for k = 1, 2.

• For each j , finding s is easy. Then go through all j .

5 / 24

CART

• Repeat the splitting process on each of the two regions, and continue.
• Q: When to stop? Or, say, what is the tree size?

• Too deep (large): high variance, low bias; overfit
• Too shallow (small): low variance, high bias

1. Stop until the decrease in RSS is too small
• Problem: too short-sighted since a seemingly worthless split early on in the tree might be

followed by a very good split

2. Better solution: grow a very large tree, stopping the splitting process only wehn some
minimum node size (say 5) is reached, and then prune it

• Cost complexity pruning: For each tuning parameter α, find the unique subtree Tα s.t.

min

|T |∑
m=1

∑
xi∈Rm

(yi − ŷRm)
2 + α|T |

where |T | denote the number of terminal nodes in T, m denotes the terminal nodes.
• The first term is just the training error. Therefore, larger α increases the price to pay for

having a tree with many terminal nodes.

6 / 24

CART

Figure: From [James et al., 2013] 7 / 24

Advantage and Disadvantage trees

• Advantage
• Interpretable and seems to be close to human decision-making.
• They are insensitive to monotone transformations of the inputs (because the split points

are based on ranking of the data points).
• They perform automatic variable selection.

• Disadvantage
• High variance: a small change in the data can result in a very different series of splits.
• Why? Hierarchical nature of the process: the effect of an error in the top split is

propagated down to all of the splits below it.
• Lack of smoothness.

8 / 24

Bagging

• Bootstrap aggregation: a general-purpose procedure for reducing the variance of a
statistical learning method

• Given a set of n iid observations with variance σ2, the variance of the mean is σ2

n
• In other words, averaging a set of observations reduces variance.
• Natural Idea: take many training sets from the population, build separate models, and

average them.
• However, it is not practical because we generally have single one training set.
• Solution: Bootstrap!

Note

Bagging does not reduce bias. Therefore, each tree should be grown deep, and are not
pruned. Hence each individual tree has high variance, but low bias.

9 / 24

Bagging

• Bagging may not work well if trees are highly correlated!

• Suppose the positive pairwise correlation ρ, the variance of the average is
ρσ2 + 1−ρ

B σ2

• This may happen if there is one very strong predictor.

• Then in the collection of bagged trees, most or all of the trees will use this strong
predictor in the top split.

• Solution: De-correlation!

• BTW: Bagging is a frequentest concept. Bayesian approach: Bayesian adaptive
regression trees (BART)

10 / 24

Random Forests

• That is a pretty dramatic name, right?
• To de-correlate trees:

• a random sample of m =
√
p predictors is chosen as split candidates from the full set of

p predictors.
• The split is allowed to use only one of those m predictors.
• A fresh sample of m predictors is taken at each split.

• The estimator can be written as

F̂ (x) =
1

B

B∑
b=1

T̂b(x)

where T̂b(x) is a tree estimator based on a subsample (or bootstrap) of size s using
m randomly selected features. The trees are usually required to have some number k
of observations in the leaves.

• There are three tuning parameters: s,m, k .
11 / 24

Cross-validation of Random Forests

• It turns out that there is a very straightforward way to estimate the test error of a
bagged model, without the need to perform cross-validation.

• Not all observations are sampled in one subset. The remaining observations not used
to fit a given bagged tree are referred to as the out-of-bag (OOB) observations.

• We can predict the response for the i-th observation using each of the trees in which
that observation was OOB.

• An OOB error estimate is almost identical to that obtained by N-fold cross-validation

• Hence unlike many other nonlinear estimators, random forests can be fit in one
sequence, with cross-validation being performed along the way.

12 / 24

Inference

• Under some regular conditions, including honesty (we will introduce it in details in
the later lectures), subsampling of size s = nβ, β < 1, [Wager and Athey, 2018] show

that F̂ (x)−F (x)
σ(x) → N(0, 1)

• They also shows that σ̂(x) = n−1
n (n

n−s)
∑n

i=1[Cov(T̂b(x),Nib)]
2, where Nib indicate

whether or not the i-th training example was used for the b-th tree.

• Random forests are considered one of the best all purpose classifiers. But it is still a
mystery why they work so well.

13 / 24

Variable Importance Measures

• How important is feature Xj?

• One intuitive way to answer this is to fit the forest with all the data and fit it again
without using Xj .

• If leaving out a covariate Xj barely changes predictive accuracy, its “true”
contribution is small.

• Practically, a random forest builds many trees; because for each tree, we randomly
subsampling some features, we already have lots of trees that never saw a given
variable during construction.

• This method is called LOCO, Leave-Out-COvariates. For each Xj , we compare the
inflation of the prediction error by not having access to Xj , and then the rank of
importance is based on the inverse rank of this value.

14 / 24

Variable Importance Measures

• A different approach is called Permutation Feature Importance.

• We measure the increase in the prediction error of the model after we permute the
values of the feature in the test set.

• A feature is ’important’ if shuffling its values increases the model error, because in
this case, the model relied on the feature for the prediction.

• A feature is ’unimportant’ if shifting its values leaves the model error unchanged
because, in this case, the model ignored the prediction feature.

15 / 24

Permutation feature importance

16 / 24

Permutation feature importance

• Let f̂ be the trained model, and let L be the loss.

• Step 1: estimate the prediction error:

errororig =
1

ntest

ntest∑
i=1

L(yi , f̂ (xi))

e.g. mean squared error.
• For each feature j do:

• permute feature Xj , generate xperm,j
i (so that breaks the association between Xj and

outcome y)
• estimate error jperm = 1

ntest

∑ntest
i=1 L(yi , f̂ (x

perm,j
i))

• calculate permutation feature importance as quotient
error jperm
errororig

or difference

error jperm − errororig

17 / 24

Boosting

• Booting is one of the most powerful learning ideas introduced in the last twenty years.

• We estimate a simple prediction rule, then take the residuals and estimate another
simple prediction rule for these residuals. Keep repeating.

• Consider additive basis-function model (ABM): f (x) =
∑M

m=1 βmb(x ; γm)

• These models are fit by minimizing a loss function:

min
f

N∑
i=1

L(yi , f (xi)) = min
βm,γm

N∑
i=1

L(yi ,
M∑

m=1

βmb(x ; γm))

This is very hard problem.

• Boosting find each b() sequentially, by an algorithm called a weak learner.

• Then, applying the weak learner sequentially to weighted versions of the data.

• More weight is given to data that does not learned well before.

18 / 24

Boosting

• We can tackle it sequentially. We initialize a f0(x), which is a simple solution. For
example, f0(x) = 0, f0(x) = y , or using GLM.

• For m = 1 to M, compute

(βm, γm) = argmin
N∑
i=1

L(yi , fm−1(xi) + βb(xi ; γ))

• Then, set fm(x) = fm−1(x) + βmb(x ; γm)

• This method is called forward stagewise additive modeling.

• We continue this for a fixed number of iterations M. In fact M is the main tuning
parameter of the method.

19 / 24

Boosting

• For example, consider square-error loss: L(y , f (x)) = (y − f (x))2

• Then,

L(yi , fm−1(xi) + βb(xi ; γ)) = (yi − fm−1(xi)− βb(xi ; γ))
2

= (residualim − βb(xi ; γ))
3

residualim = yi − fm−1(xi) is simply the residual on the ith observation.

• That is, we fit a model using the residuals.

20 / 24

Boosting

• How to choose M? If M is too large, it can lead to overfitting.

• Often we pick it by monitoring the performance on a separate validation set, and
then stopping once performance starts to decrease; this is called early stopping.

• In practice, better (test set) performance can be obtained by performing “partial
updates”:

fm(x) = fm−1(x) + νβmb(x ; γm)

• 0 < ν ≤ 1 is a step-size parameter. In practice it is common to use a small value
such as µ = 0.1.

21 / 24

Boosting Trees

• Note that a tree is an additive function: T (x ; Θ) =
∑

j=1 ŷRj
I (x ∈ Rj), where

Θ = {Rj , ŷRj
}, and

Θ̂ = argmin
∑
j=1

∑
xi∈Rj

L(yi , ŷRj
)

• For boosting trees, in each step, we solve

Θ̂ = argmin
∑
j=1

L(yi , fm−1(xi) + T (xi ; Θm))

• For squared-error loss, we just build tree for the residuals.

22 / 24

Boosting

Figure: Caption

23 / 24

References

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013).

An introduction to statistical learning: with applications in R, volume 103.

Springer.

Wager, S. and Athey, S. (2018).

Estimation and inference of heterogeneous treatment effects using random forests.

Journal of the American Statistical Association, 113(523):1228–1242.

24 / 24

	Tree-based Methods
	Bagging
	Random Forests
	Boosting

