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Unsupervised Learning

• Previous lectures concern with predicting Y for a given set of covariate X .

• This is called supervised learning or “learn-ing with a teacher.” The “student”
presents an answer ŷi for each xi in the training sample, and the supervisor or
“teacher” provides either the correct answer and/or an error associated with the
student’s answer, characterized by loss function L(y , ŷ).

• Unsupervised learning, learning without a teacher, is often much more challenging.

• Given N observations X = (x1, x2, ..., xn) from joint density P(X ), the goal is to
directly infer the properties of this probability density without the help of a
supervisor or teacher providing correct answers.

• The exercise tends to be more subjective, and there is no simple goal for the analysis,
such as prediction of a response.

3 / 24



K-means clustering

• Cluster analysis aims to grouping or segmenting a collection of objects into subsets
or “clusters,” such that those within each cluster are more closely related to one
another than objects assigned to different clusters.

• The K-means algorithm is one of the most popular iterative descent clustering
methods.

• In K-means clustering, we seek to partition the observations into a pre-specified K
number of clusters.
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K-means clustering

• Let C1, ...,CK denote sets containing the indices of the observations in each cluster.

• There sets satisfy

1. C1 ∪ ... ∪ CK = {1, ...,N}; each observation belongs to at least one of the K clusters.
2. Ck ∩ Ck′ = ∅ ∀k ̸= k ′; no observation belongs to more than one cluster.

• A good clustering is one for which the within-cluster variation is as small as possible.

• Define the within-cluster variation for k-th cluster as
W (Ck) =

1
|Ck |

∑
i ,i ′∈Ck

||xi − xi ′ ||2.
• Therefore, the optimization problem that defines K-means clustering is

min
C1,...,CK

K∑
k=1

W (Ck) =
1

2

K∑
k=1

1

|Ck |
∑

i ,i ′∈Ck

||xi − xi ′ ||2

• It is very difficult to solve precisely because there are almost Kn ways to partition n
observations into K clusters.
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K-means clustering

• Observe that

min
C1,...,CK

K∑
k=1

W (Ck) =
1

2

K∑
k=1

1

|Ck |
∑

i ,i ′∈Ck

||xi − xi ′ ||2

=
K∑

k=1

∑
i∈Ck

||xi − xk ||2

where xk = (x1k , ..., xpk) is the mean vector associated with the k−th cluster
(xkj =

1
|Ck |

∑
i∈Ck

xij .)

• Therefore, the criterion is minimized by assigning the N observations to the K
clusters in such a way that within each cluster the average dissimilarity of the
observations from the cluster mean.
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K-means clustering

Figure: From [James et al., 2013]
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K-means clustering

Figure: From [James et al., 2013] 8 / 24



K-means clustering

• K-means algorithm finds a local rather than a global optimum, the results obtained
will depend on the initial (random) cluster assignment.

• It is important to run the algorithm multiple times from different random initial
configurations. Then one selects the best solution.

Figure: Caption
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How to choose K?

• A choice for the number of clusters K depends on the goal.

• A naive idea is to go through K from 1 to Kmax and calculate the optimized value of
the objective function.

• Typically, the optimized value decreases with increasing K .

• Thus cross-validation techniques, so useful for model selection in supervised learning,
cannot be utilized in this context.
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How to choose K?

• Suppose there are actually K ∗ distinct groups.

• Then for K < K ∗, the clusters returned by the algorithm will each contain a subset
of the true underlying groups.

• That is, the solution will not assign observations in the same naturally occurring
group to different estimated clusters.

• To the extent that this is the case, the solution criterion value will tend to decrease
substantially with each successive increase in the number of specified cluster.

• For K > K ∗, one of the estimated clusters must partition at least one of the natural
groups into two sub- groups. This will tend to provide a smaller decrease in the
criterion as K is further increased.
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How to choose K?

• Therefore, we are looking for a kink on the plot of optimized value of the objective
function as a function of K .

• Note that this approach, usually called the Elbow Method, is somewhat heuristic.

Figure: In the figure, K∗ should be 2.
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How to choose K?

• Actually, this is still an active area of research and there are no definitive answer.

• Another idea is to treat choosing k as a hypothesis testing problem.

• The null hypothesis is Hk : the number of clusters is k, and the alternative is larger
than k.

• We choose the first k that is not rejected.

• Other idea: we can compare the intracluster variability to the expected variability if
the data were uniformly distributed on a rectangle. The number of clusters is then
chosen based on the comparisons of these metrics. This is called Gap Statistic
Method.
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Principal Component Analysis

• Given a high-dimensional data set X = (X1, ...Xp), how can we find a
low-dimensional representation of a data set that contains as much as possible of the
variation?

• A central goal of deep learning is to discover representations of data that are useful
for one or more subsequent applications.

• Before we go to deep learning, we will learn a simple autoencoder here: PCA.

• The idea is that each of the n observations lives in p-dimensional space, but not all
of these dimensions are equally interesting.

• PCA seeks a small number of dimensions that are as interesting as possible, where
the concept of interesting is measured by the amount that the observations vary
along each dimension.
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PCA

• Each of the dimensions, principal components, found by PCA is a linear combination
of the p features.

• The first principal component of a set of features is the normalized linear
combination fo the features

Z1 = ϕ11X1 + ϕ21X2 + ...+ ϕp1Xp

that has the largest variance.

• By normalized, we mean loadings, ϕ11, ..., ϕp1, such that
∑p

j=1 ϕ
2
j1 = 1 because

otherwise setting these elements to be arbitrarily large in absolute value could result
in an arbitrarily large variance.

• Since we are only interested in variance, we assume that each of the variables in X
has been centered to have mean zero.
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PCA

• In practice, the first principal component loadings are solved by the optimization
problem

max
ϕ11,...,ϕp1

1

n

n∑
i=1

(

p∑
j=1

ϕj1xij)
2 =

1

n

n∑
i=1

z2i1

s.t.

p∑
j=1

ϕ2
j1 = 1

• Note, it is just the sample variance of the n values of zi1 because the average of
them is zero.

• We refer to z11, ..., zn1 as the scores of the first principal component.
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PCA

Figure: From [James et al., 2013]
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PCA

• Write them into the matrix form:
1. ϕ1 = (ϕ11, ..., ϕp1)

T

2. zi1 = ϕ11xi1 + ...,+ϕp1xip = x ′i ϕ1

3. 1
n

∑n
i=1 z

2
i1 =

1
n

∑n
i=1 ϕ

T
1 xix

T
i ϕ1 = ϕT

1 Sϕ1, where S = 1
n

∑n
i=1 xix

T
i is the sample

covariance matrix.

• Therefore, PCA solves

max
ϕ1

Var(Z1) = ϕT
1 Sϕ1 s.t.||ϕ1|| = 1

• We introduce a Lagrange multiplier that we will denote by λ1; then we solve

ϕT
1 Sϕ1 + λ1(1− ϕT

1 ϕ1)

• Setting the derivative with respect to ϕ1 equal to zero, we get Sϕ1 = λ1ϕ1

• Thus, ϕ1 is the eigenvector of S .
• And Var(Z1) = ϕT

1 Sϕ1 = λ1; the variance is maximum when we take ϕ1 equal to the
eigenvector having the largest eigenvalue λ1.
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PCA

• The second principal component Z2 = ϕ12X1 + ϕ22X2 + ...+ ϕp2Xp is the linear
combination of X1, ...,Xp that has maximal variance out of all linear combinations
that are not correlated with Z1.

• It turns out that constraining Z2 to be uncorrelated with Z1 is equivalent to
constraining the direction ϕ2 = (ϕ12, ..., ϕp2) to be orthogonal to the direction
ϕ1 = (ϕ11, ..., ϕp1): ϕ

′
2ϕ1 = 0.

• It also turns out that ϕ2 will be the eigenvector of S with the second largest
eigenvalue.
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PCA

• In summary, PCA involves evaluating the mean x and the covariance matrix S of a
data set and then finding the M eigenvectors of S corresponding to the M largest
eigenvalues.

• Now, we can rephrase the original problem.

• Given the data with dimension p, our goal is to project the data onto a space having
dimensionality M < p.

• In other words, we hope to find a matrix W such that Z = XW , has lower dimension
but captures enough variance of data X .

• Then, ZM = XϕM , ϕM = [ϕ1, ..., ϕM ] is a weight matrix p ×M whose columns are
the first M largest eigenvectors of XTX ; ZM has a lower dimension n ×M, each row
of ZM is the compressed version of the original observation of dimensions p.
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Another interpretation of PCA

• Suppose that we want to find an orthogonal set of M linear basis vectors ϕj ∈ Rp,
and the corresponding scores (or say coefficient) zi ∈ RM , such that we minimize the
average reconstruction error

J(ϕ,Z ) =
1

N

n∑
i=1

||xi − x̂i ||2,

where x̂i = ϕzi =
∑M

j=1 zijϕj , subject to ϕ (Dim: p ×M) is orthonormal.

• The optimal solution is obtained by setting ϕ, which contains the M eigenvectors
with largest eigenvalues of S .
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Another interpretation of PCA

• Again, start by estimating the first ϕ1 ∈ Rp.

J(ϕ1, z1) =
1

N

n∑
i=1

||xi − x̂i ||2

=
1

N

n∑
i=1

[xTi xi − 2zi1ϕ
T
1 xi + z2i1ϕ

T
i ϕ1]

=
1

N

n∑
i=1

[xTi xi − 2zi1ϕ
T
1 xi + z2i1]

• Take derivative wrt zi1 and set to zero, we get zi1 = ϕT
1 xi .

• Plugging back: J(ϕ1) =
1
N

∑n
i=1[x

T
i xi − z2i1] = const − 1

N

∑n
i=1 z

2
i1

• Then we just minimize the second part; it is equivalent to maximize ϕT
1 Sϕ1. We

have seen it before.
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Another interpretation of PCA

Figure: From [Murphy, 2012]

• PCA can let us use the lower dimension to represent the data and reconstruct the
data. If we can add some random noise and probably can generate a new sample!
We will learn generative models in DL.
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