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Abstract 

Background:  Atrial fibrillation is commonly diagnosed worldwide; however, whether and how 
the basal metabolic rate affects atrial fibrillation remains unclear. The aim of this study is to 
evaluate their causal relationship and the potential mechanism using serum proteomic profiling. 
Methods:  Bidirectional two-sample Mendelian randomization studies on summary statistics of 
genome-wide association studies were conducted, along with an analysis of thirteen potential 
biomarkers of incident atrial fibrillation. Multivariable Mendelian randomization is also conducted 
by controlling for other risk factors, including heigh, fat free mass, coronary heart disease, heart 
failure, obesity, hypertension, thyrotoxicosis, and diabetes. 
Results: Basal metabolic rate increases incident atrial fibrillation (β = 0.77, 95% CI 0.64-0.90, 
p < 0.0001). This effect persisted after adjusting for body composition or metabolic diseases 
using multivariable Mendelian randomization. Higher basal metabolic rate has a positive causal 
effect on resistin (β = 0.24, 95% CI 0.64-0.41, p < 0.01), growth differentiation factor 15 (β = 
0.62, 95% CI 0.15-1.08, p = 0.01), and a negative causal association on bone morphogenetic 
protein receptor type-1A (β = −0.30, 95% CI -0.94-0.11, p = 0.002). However, it did not have a 
significant causal effect on inflammatory cytokines (C-reactive protein and interleukin-6). 

Conclusions: A higher basal metabolic rate is a causal risk factor for atrial fibrillation. 
Furthermore, it is causally associated with several atrial remodelling-associated proteins but not 
inflammatory cytokines, indicating that atrial remodelling influenced by the basal metabolic rate 
may not involve systemic inflammation. Our findings suggest that behaviours and lifestyles of 
reducing or maintaining BMR prevent AF incidence. 
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Graphical Abstract 

 

Key Question: Is a higher basal metabolic rate causally related to atrial fibrillation and if so, 
what is the mechanism? 
 
Key Findings: In this Mendelian randomisation study, basal metabolic rate had a significantly 
positive causal association with the incidence of atrial fibrillation and several atrial remodelling-
associated proteins but not on C-reactive protein or interleukin-6 (inflammatory cytokines).  
 
Take-home message: A higher basal metabolic rate causes atrial fibrillation incidence, and atrial 
remodelling influenced by the basal metabolic rate may not involve systemic 
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Introduction 

Atrial fibrillation (AF) is the most commonly diagnosed cardiac arrhythmia, affecting 

approximately 30 million individuals worldwide.1 AF contributes to several cardiovascular, 

such as ischemic stroke and heart failure, and non-cardiovascular outcomes, such as cognitive 

impairment, which increase socioeconomic burden and mortality risk. Risk factors for AF 

include advanced age, obesity, hypertension, diabetes, obstructive sleep apnea, and other 

cardiovascular diseases.2 Recent studies have identified independent genetic variants at more 

than 100 loci that are significantly involved in AF.3,4 

Metabolic rate is associated with key physiological and life history traits, including 

survival, growth, immunity, predation, and reproductive output.5 Basal metabolic rate (BMR) 

is the daily energy required to preserve vital function integrity and accounts for 35–70% of the 

total energy requirement. An increased BMR is reportedly associated with a greater mortality 

risk.6,7 Additionally, BMR is positively associated with blood pressure after adjusting for 

Body Mass Index (BMI),8,9 and cancer and diabetes are associated with a higher BMR at 

baseline.10 

A recent cohort study showed that body composition parameters, including metabolic rate, 

are associated with AF occurrence and type.11 Although these observational data indicate an 

association between the two, the actual effect of BMR on AF remains unclear. Moreover, little 

is known regarding the biological pathways linking BMR and AF. Genome-wide association 

studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated 

with BMR, AF, and plasma proteins. Therefore, we used a two-sample Mendelian 

randomization (MR) approach that infers the causality among correlated traits with genetic 

instrumental variants, which are less vulnerable to confounding and reverse causation bias. To 
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investigate the potential causal mechanism, we also conducted serum proteomic profiling 

using MR, which may clarify the pathophysiological mechanisms linking BMR and AF. 

Our findings can shed light on many clinic implications; for example, high-volume 

endurance exercise by elite athletes increases their AF risk, which is five times higher than that 

in non-athletes.2 Conversely, athletes have significantly higher resting metabolic rates than 

non-athletes.12 

 

Methods 

Study Design and Data Sources 

This study investigated the causal relationship between BMR and AF using a bidirectional 

two-sample MR analysis. To ensure the selection of a similar study population while 

minimizing sample overlap, we used summary statistical data from two large-scale GWAS 

analyses: the Neale lab study from the UK Biobank (UKBB) and FinnGen biobank for BMR 

and AF, respectively. Ethical approval was obtained in the original studies. We then performed 

a two-sample MR analysis between BMR and several plasma proteins, which were 

significantly associated with the risk of incident AF and identified as potential biomarkers of 

incident AF previously.13–16 GWAS summary data of plasma proteins were obtained from a 

plasma proteome study of the INTERVAL study.17 Figure 1 gives an overview of the study. 

All GWAS data used were de-identified summary data that were publicly available. 

Information regarding the data sources and sample sizes used in this study is summarized in 

Additional file1: Table S1.  
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Statistical Analyses 

As an instrumental variable (IV) method, MR must satisfy three main identification 

assumptions. First, genetic variants should be associated with exposure (BMR). If the 

association is weak, the estimate is biased and leads to a greater type 1 error in a finite sample.18 

To avoid this, we used a two-sample analysis strategy rather than the traditional individual IV 

analysis.19 F-statistics were calculated to assess the strength of each selected IV.20 The second 

assumption requires there are no unmeasured confounders of the associations between genetic 

Figure 1. Mendelian Randomization Analysis Overview. The left flow chart illustrates our 
main two-sample mendelian randomization analysis. The right part shows the covariates we used 
in the multivariable MR. Line from proteins to AF indicates the significant relationship in 
previous studies. 
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variants and outcomes. The last one is the exclusion restriction: IV affects the outcome only 

through exposure. 

Assuming all the above IV assumptions are satisfied, our favoured estimate is the efficient 

inverse-variance weighted (IVW) estimate, which is asymptotically equal to the two-stage 

least squares estimator using individual data.21 However, IVW is likely to be biased, commonly 

due to horizontal pleiotropy.22 To address this issue, we also conduct MR-Egger regression, 

which can be consistent even under a weaker Strength Independent of Direct Effect 

assumption.23 Recently, a unified framework is developed to resolve weak IVs, horizontal 

pleiotropy, and selection bias by adjusting the profile likelihood.24 We report the proposed 

MR-RAPS estimator. 

Although uncommon, IV may correlate unobserved confounder, possibly because of 

population stratification. Therefore, we applied a new and robust method. The contamination 

mixture (Conmix) allows invalidity of some genetic variants.25 Based on the profile-likelihood 

approach, MR-Conmix efficiently computes causal effects with hundreds of SNPs.  

Many other risk factors are closely related to BMR and AF. Therefore, we additionally 

conducted the multivariable MR (MVMR). This approach allows us to estimate the direct 

causal effect of BMR.27,28 All GWAS summary data of covariates were obtained from the 

Neale lab. The data processing was similar to that of the exposure. We used multiple models, 

including MVMR-IVW, MVMR-Egger, and MVMR-Lasso, for a robustness check. 

Statistical analysis was performed using the TwoSampleMR, MRInstruments, and 

MendelianRandomization R packages, version 3.6.1 (RStudio, Boston, MA, USA). 
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Exposure: BMR-associated Genetic IVs 

IVs for BMR were obtained from the UKBB GWAS phenotypes released by the Neale lab 

(phenotype code: 23105). BMR was measured with a body composition analyser using data 

derived by dual-energy X-ray absorptiometry using bioelectrical impedance analysis at an 

Assessment Centre of the UK Biobank. Because BMR is a continuous variable, we used a 

revised version with inverse-rank normalized values.29 Single- or both-sex GWAS summary 

data were extracted for analysis. For each BMR trait, SNPs were included if they obtained a 

significant genome-wide association level (p ≤ 5 × 10−8) or had a minor allele frequency over 

0.01. We only contained independent SNPs (linkage disequilibrium distance threshold, 10,000 

kb; coefficient of determination R2 < 0.001). 

Selection bias indicates the overestimation of the relationship between exposure and 

outcome, which may lead the MR estimate towards a null effect.30 To avoid this, we follow the 

literature to conduct a robust analysis. 31 First, we identify IVs for BMR only in the single-sex 

set rather than in the whole sample. Then, we use identified IVs to conduct the original MR.   

In the GWAS results released by the Neale laboratory, age, sex, and principal components 

1-20 were included as covariates in their model. In our sex-specific analyses, age and principal 

components were included as covariates in the model. Detailed SNPs for the IVs of BMR and 

F-statistics are presented in Additional file1: Table S2-S4. 

Outcome: AF Outcome Data 

We extracted GWAS summary data associated with AF from the FinnGen Study Release 

6 (phenotype code: I9 AF). The International Classification of Diseases diagnosis codes were 
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used to define AF in the FinnGen study. GWAS were adjusted for age, sex, ten principal 

components, and the genotyping batch.  

For each BMR-instrumental SNP, corresponding SNP information, including SNP position, 

reference SNP identification number, effect allele frequency, effect size, standard error, and p-

values, was extracted from the AF GWAS. 

Plasma Proteins Data 

Sun et al. performed genome-wide testing of the human plasma proteome in healthy blood 

donors from the INTERVAL study, including 2,994 plasma proteins in 3,301 individuals of 

European descent.17 Based on previous studies,13–16 11 plasma proteins, identified as potential 

biomarkers of incident AF. Their hazard ratio were summarized in Additional file1: Table S5. 

Protein levels were adjusted using linear regression for age, sex, and the first three principal 

components. 

 

Sensitivity Analysis 

We conducted three broad classes of sensitivity analyses. First, we conducted multiple tests 

for measurement errors, heterogeneity, and pleiotropy. (1) We checked I2 statistics; if SNP-

exposure association is measured without error, I2 will tend towards one.32 (2) To test 

directional pleiotropy, we subsequently assessed the estimate, confidence interval (CI), and p-

value for the intercept in the MR-Egger.23 (3) Cochran’s and Rucker’s Q tests along with MR-

PRESSO for the main regressions were performed; MR-PRESSO can correct horizontal 
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pleiotropy by removing outliers.33 (4) In addition, we used a funnel plot to visually check for 

directional pleiotropy.34 Plot asymmetry is a sign of directional pleiotropy.35 

Second, we tested whether our results were sensitive to the data and model specifications. 

(1) We used MR-LASSO to re-estimate the main results and (2) checked whether the results 

were driven by specific SNPs. Because we have more than 500 SNPs, we used the bootstrap 

technique that randomly excludes 30% of the SNPs and re-performs MR-Egger 1000 times.36 

Third, we conducted bidirectional MR to determine whether AF results in a higher BMR. 

Detecting the effect of AF on BMR may indicate that some SNPs violated the identification 

assumptions. 

Results 

Two-sample MR: Higher BMR Causes AF 

We identified 458 SNPs for BMR-associated IVs (235 and 227 SNPs in females and males, 

respectively). The F statistics for IVs ranged from 29.74 to 678.91, indicating that these 

analyses were minimally affected by weak instrument bias (Additional file1: Tables S2-S4). 

BMR showed a statistically significant causal effect on AF (β = 0.77 , 95% CI 0.64 − 0.90), 

indicating that a higher BMR causes AF (Figure 2). The direction of this causal effect remained 

consistent across all the methods, confirming the robustness of the MR results. By consistently 

using female or male BMR summary GWAS to identify IVs, the estimates confirmed a 

significant causal relationship between BMR and AF (β = 0.83, 95% CI 0.67−1.00 and β = 

0.84, 95% CI 0.67 − 1.01 respectively). We found little evidence (I2 > 0.9) of attenuation bias 

due to measurement error (Additional file1: Table S6). The MR-Egger intercept test provided 
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little evidence (p > 0.1) of directional pleiotropy (Additional file1: Table S7). Additionally, 

the funnel plot indicated balanced pleiotropy of individual SNP, with a symmetrical variant 

effect distribution (Additional file1: Figure S1). Results are consistent under Bootstrap 

(Additional file1: Figure S2) . The Cochran’s and Rucker’s Q values are reported in Additional 

file1: Table S8. Due to the large number of SNPs, evidence of heterogeneity was observed. 

The estimates from the MR-Presso (β = 0.77, 95% CI 0.65−0.90) conducted to correct 

horizontal pleiotropy were consistent with the results of the other methods (Additional file1: 

Table S9). 

 

       

 

Bidirectional MR was used to assess the causality and direction of the association between 

BMR and AF. Conversely, we estimated the causal effect of AF on BMR using significant 

SNP as AF genetic IVs. The MR results provided little evidence that AF affected the BMR (p 

= 0.35) (Additional file1: Table S10). 

 

Figure 2. Univariable Causal Association Between Basal Metabolic Rate and Atrial Fibrillation. 
IV, instrumental variable; SNP, single nucleotide polymorphism; IVW, Inverse variance weighted; 
MR Egger, Mendelian randomization Egger; LASSO, least absolute shrinkage and selection operator; 
RAPS, robust adjusted profile score; Conmix, contamination mixture method. Exposure IVs were 
obtained from significant SNPs for BMR in both sexes, females and males, respectively. 
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MVMR: BMR and AF 

      MVMR analyses were used to estimate the direct effect of BMR on AF, conditioned on 

measured potential confounders, including height, fat free mass and major cardiac and 

metabolic diseases (Table 1 and Additional file1: Table S11). The IVW MVMR results showed 

that this causal effect of BMR on AF was unaffected after controlling for height and fat free 

mass (β = 2.624, 95% CI 0.527 – 4.721), as well as major cardiac and metabolic diseases (β = 

0.752, 95% CI 0.608−0.895). This estimated result was consistent across all methods. Little 

directional pleiotropy was observed in the MR-Egger intercept test. 

 

Two-sample MR: BMR and Plasma Protein Level 

The estimated causal effects between BMR and proteins level are shown in Table 2. The 

results showed that higher BMR had a positive causal effect on resistin (IVW β = 0.24, 95% 

CI 0.06 − 0.41, p < 0.01) and a negative effect on bone morphogenetic protein receptor type-

1A (BMPR1A) (IVW β = −0.30, 95% CI [−0.49,−0.11], p = 0.002), which was consistent 

across all methods and are robust after controlling the false discovery rate of 5%. Fibroblast 

growth factor 23 (FGF-23) (IVW β = 0.15, 95% CI −0.03−0.33, p = 0.097) shows a marginal 

relationship. Considering the pleiotropic effects, a higher BMR also has a positive causal effect 

on growth differentiation factor 15 (MR-Egger β = 0.62, 95% CI 0.15 − 1.08, p = 0.01) and 

vascular cell adhesion molecule 1 (VCAM-1) (MR-Egger β = 0.44, 95% CI −0.02 − 0.90, p = 

0.06). These estimated effects were consistent across other MR methods. In contrast, a 

consistently negative causal effect was also observed for BMR on neural cell adhesion 

molecule 1 (IVW β = −0.21, 95% CI [−0.41,−0.01], p = 0.037). However, no significant causal 
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effect was found between BMR and inflammatory cytokines, such as C-reactive protein (CRP) 

and interleukin-6 (IL-6).  

 

Discussion 

In this study, we examined the causal effect of BMR on AF using MR. Our univariable 

two-sample MR analysis suggested that higher BMR is a causal risk factor for AF incidence. 

This estimated effect is consistent with estimates from other MR analyses, indicating that 

horizontal pleiotropy had minimal association with this result. The direction of this relationship 

was confirmed using bidirectional MR analysis. 

Previous studies showed that height and fat free mass are likely a positive causal risk factor 

for atrial fibrillation.37,38 Our MVMR results corroborated the association between higher 

BMR and the risk of AF incidence independently of height, fat free mass, and several potential 

confounders considered in the present study. Studies showed that resting energy expenditure 

was found to be significantly higher in obese individuals39 and individuals with type 2 diabetes 

mellitus have higher BMRs than the non-diabetic control group.40 Therefore, we adjusted for 

common metabolic diseases, such as obesity, diabetes, thyrotoxicosis, hypertension in the 

MVMR. We also included cardiac event such as heart failure and coronary heart disease. Our 

results also confirmed this estimation. Furthermore, we found that coronary heart disease and 

hypertension are strongly associated with AF incidence. 

Our findings correlated with those of previous population-based cohort studies, which 

suggested that patients with AF had significantly higher values of bioelectrical impedance 

analysis parameters, including BMR.11 However, this correlation provided by observational 

studies might suffer from confounding or reverse causation bias. The MR study design 
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identifies causation. Moreover, the bidirectional MR analysis made any impact of reverse 

causation unlikely. 

Potential Mechanism by Protein Analysis 

    We reviewed four prospective proteomics studies that reported the simultaneous 

screening of several proteins as potential AF biomarkers.13–16  Eleven proteins were 

selected for screening the potential biological links between BMR and AF. N-terminal 

pro-brain natriuretic peptide (NT-proBNP) is reportedly a predictor of AF 

incidence.13,14,41,42 Due to the absence of GWAS summary statistical data of NT-proBNP 

in the plasma proteome study by Sun et al.,17 we used BNP32 instead, which is the C-

terminal fragment of NT-proBNP. However, we did not find a statistically significant 

causal effect between BMR and BNP32, suggesting that NT-proBNP might not be a 

biological link between BMR and AF. 

A cohort study showed that elevated FGF-23 levels are associated with higher risks of AF 

and reduced left ventricular (LV) function independent of kidney disease, which also affects 

all-cause and cardiovascular mortality.43,44 Several prospective studies have validated the role 

of FGF-23 as a biomarker of prevalent AF.44–45 In vitro and in vivo studies have implicated 

FGF-23 in promoting myocardial remodelling and cardiac hypertrophy46 and fibrosis,47 which 

can alter atrial electrophysiology and enhance atrial arrhythmogenesis, leading to AF.48 

Moreover, FGF-23 is associated with endothelial dysfunction.49 

Resistin is associated with increased insulin resistance, and has pro-inflammatory and pro-

hypertrophic effects.50 Increased plasma resistin concentrations are significantly related to AF 

incidence.51–53 Resistin directly affects the heart and its electrical properties. Mouse studies 
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have demonstrated that resistin can depress cardiac contractility, promote cardiac 

hypertrophy,54 and promote endothelial cell activation and smooth muscle cell proliferation.55 

VCAM-1 is a transmembrane type 1 protein, and increased levels of its soluble form 

(sVCAM-1) are associated with various cardiac diseases, such as ischemic cardiomyopathy, 

acute myocarditis, and AF.56 A cohort study with a 20-year follow-up suggested that sVCAM1 

was significantly associated with AF incidence.15 One hypothesis of VCAM-1 in AF 

pathophysiology is that circulating VCAM-1 partially reflects local endocardial activation that 

influences atrial remodelling. Reportedly, sVCAM-1 levels significantly correlate with 

ventricular remodelling in patients with ST elevation myocardial infarction.57 

Bone morphogenetic protein ligands and receptors, including BMPR1A, are essential for 

embryonic cardiac and vascular development. Ko et al. showed that decreased BMPR1A 

expression was significantly associated with AF incidence.14 Furthermore, BMPR1A 

signalling for bone morphogenetic proteins is required for proper atrioventricular junction 

development.58 BMP7-based small peptides, which function as BMPR1A agonists, inhibit 

pathological LV remodelling induced by pressure overload.59 

The generation and persistence of AF depend on the trigger and substrate, including 

electrical and structural atrial remodelling. In this study, several potential AF biomarkers 

which are causally affected by higher BMR influence structural atrial remodelling. 

Furthermore, inflammation can alter the atrial electrophysiology and structure to increase 

vulnerability to AF. However, we found that two important inflammatory cytokines, CRP and 

IL-6, had no causal relation with BMR in this MR analysis. Thus, it was assumed that BMR 

was associated with atrial remodelling that leads to AF and systemic inflammation was not 

participate in this pathway (Figure 3). 
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Recent studies on the basal metabolism focused more on diet and exercise program. 

Although there was no agreement in the literature regarding the effect of exercise on BMR, 

the resistance exercise appeared to increase BMR, while aerobic exercise did not have similar 

effect.60,61 And daily carbohydrate restriction, such as the ketogenic diet and western diet, is 

accompanied by a decline in the reduction of BMR.60,62 Thus, changes in behaviour and 

lifestyle, such as dietary intake and regular physical activity, might prevent the incidence of 

AF by reducing or maintaining BMR. 

 

 

 

 

 

Strengths and Limitations 

The strengths of this study include the identification and estimation of the causal effect of 

BMR on AF, usage of the latest MR estimators, combination of multiple data sources, and 

most importantly, application of human plasma proteome GWAS studies. We not only 

established the causal relationship but also attempted to explain the potential mechanism. 

Figure 3. Overview of Potential Mechanism from Basal Metabolic Rate to Incident Atrial 
Fibrillation in Plasma Protein Level. FGF-23, fibroblast growth factor 23; VCAM-1, vascular cell 
adhesion molecule 1; BMPR1A, bone morphogenetic protein receptor type-1A; CRP, C-reactive 
protein; IL-6 interleukin-6.  

 
 



 16 

However, our study had a few limitations. First, almost all study participants were of 

European ancestry; therefore, our results may be inapplicable in other ethnic groups. Second, 

the association between BMR and protein levels was only determined under the MR 

assumption, and sample of the plasma proteome GWAS study was insufficient to avoid a weak 

instrument bias. Finally, the association between increasing BMR and AF assumes a linear 

relationship; thus, this study could not determine the optimal BMR for AF occurrence.  

Conclusion 

In conclusion, this two-sample MR study showed that a higher BMR is a causal risk factor 

for AF incidence, regardless of height, BMI or cardiac and metabolic diseases. Furthermore, a 

higher BMR has a causal association with several atrial remodelling-associated proteins but 

not inflammatory cytokines, indicating that atrial remodelling influenced by the basal 

metabolic rate may not involve systemic inflammation. Our findings suggest that behaviours 

and lifestyle of reducing or maintaining BMR prevent AF incidence. Further work is needed 

to assess the overall impact of the BMR, dietary intake, and physical activity on AF. 
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List of abbreviations: 

BMR = basal metabolic rate 

AF = atrial fibrillation 

GWAS = genome-wide association study 

MR = Mendelian randomization 

BMPR1A = bone morphogenetic protein receptor type-1A 

FGF-23 = fibroblast growth factor 23 

VCAM-1 = vascular cell adhesion molecule 1  
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Table 1 The Multivariable Mendelian Randomization results of Basal Metabolic Rate on 
Atrial Fibrillation 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: All models were estimated with inverse variance weighted multivariable Mendelian randomization 
analyses. Data were represented as estimated β(SE). SNP, single nucleotide polymorphism; BMR, basal 
metabolic rate; AF, atrial fibrillation; IVW, Inverse variance weighted; RSE, residual standard error. ∗p<0.1; 
∗∗p<0.05; ∗∗∗p<0.01 
 
  

   Model 1 Model 2 

N (SNPs)  662 396 
Exposure BMR 2.624** 

(1.070) 
0.752*** 
(0.073) 

Covariate Height 0.009 
(0.088) 

 

 Fat Free Mass -1.787 
(1.128) 

 

 Hypertension   19.297*** 
(6.107) 

 Coronary Heart 
Disease 

 6.322*** 
(1.619) 

 Heart Failure  7.599 
(5.992) 

 Obesity  -8.573 
(9.734) 

 Diabetes  2.677 
(6.600) 

 Thyrotoxicosis  -6.106 
(17.511) 

RSE  1.259 1.296 
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Table 2: Univariable causal effects of basal metabolic rate on potential plasma biomarkers 
to incident AF 
Protein Beta (95%CI) P value 
Growth/differentiation factor 15   

  Inverse variance weighted 0.04 (-0.15, 0.23) 0.692  
  MR Egger 0.62 (0.15, 1.08) 0.010  
  LASSO 0.00 (-0.18, 0.18) 0.974  
  RAPS 0.04 (-0.15, 0.24) 0.668  
  Conmix -0.02 (-0.34, 0.33) 0.845  
Resistin   

  Inverse variance weighted 0.24 (0.06, 0.41) 0.008  
  MR Egger 0.50 (0.06, 0.93) 0.027  
  LASSO 0.25 (0.08, 0.42) 0.005  
  RAPS 0.29 (0.10, 0.47) 0.002  
  Conmix 0.71 (0.39, 0.94) 0.000  
Vascular cell adhesion protein 1   

  Inverse variance weighted 0.09 (-0.09, 0.28) 0.330  
  MR Egger 0.44 (-0.02, 0.90) 0.064  
  LASSO 0.14 (-0.03, 0.32) 0.114  
  RAPS 0.14 (-0.04, 0.33) 0.130  
  Conmix 0.23 (-0.01, 0.55) 0.065  
Brain natriuretic peptide 32   

  Inverse variance weighted -0.13 (-0.32, 0.06) 0.171  
  MR Egger -0.28 (-0.75, 0.18) 0.227  
  LASSO -0.05 (-0.23, 0.12) 0.565  
  RAPS -0.07 (-0.26, 0.12) 0.468  
  Conmix -0.06 (-0.34, 0.26) 0.835  
Fibroblast growth factor 23   

  Inverse variance weighted 0.15 (-0.03, 0.33) 0.097  
  MR Egger 0.27 (-0.17, 0.70) 0.235  
  LASSO 0.16 (-0.01, 0.34) 0.066  
  RAPS 0.18 (0.00, 0.36) 0.054  
  Conmix 0.26 (0.00, 0.66) 0.054  
Interleukin-6   

  Inverse variance weighted -0.04 (-0.22, 0.14) 0.687  
  MR Egger -0.28 (-0.73, 0.16) 0.216  
  LASSO -0.06 (-0.23, 0.12) 0.533  
  RAPS -0.06 (-0.25, 0.12) 0.492  
  Conmix -0.23 (-0.53, 0.21) 0.188  
Fatty acid-binding protein, adipocyte   

  Inverse variance weighted 0.05 (-0.13, 0.22) 0.599  
  MR Egger 0.00 (-0.43, 0.44) 0.989  
  LASSO 0.06 (-0.12, 0.23) 0.518  
  RAPS 0.07 (-0.11, 0.25) 0.459  
  Conmix 0.20 (-0.08, 0.46) 0.191  
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C-reactive protein   

  Inverse variance weighted -0.01 (-0.20, 0.18) 0.950  
  MR Egger -0.03 (-0.50, 0.44) 0.906  
  LASSO 0.03 (-0.15, 0.21) 0.735  
  RAPS 0.02 (-0.17, 0.22) 0.806  
  Conmix 0.29 (-0.04, 0.56) 0.075  
Neural cell adhesion molecule 1, 120 kDa isoform   

  Inverse variance weighted -0.21 (-0.41, -0.01) 0.037  
  MR Egger -0.33 (-0.82, 0.16) 0.186  
  LASSO -0.27 (-0.45, -0.09) 0.003  
  RAPS -0.23 (-0.44, -0.03) 0.025  
  Conmix -0.37 (-0.68, -0.11) 0.008  
Angiopoietin-2   

  Inverse variance weighted 0.11 (-0.06, 0.29) 0.206  
  MR Egger 0.04 (-0.39, 0.48) 0.850  
  LASSO 0.12 (-0.05, 0.30) 0.166  
  RAPS 0.14 (-0.05, 0.32) 0.144  
  Conmix 0.12 (-0.13, 0.46) 0.290  
Bone morphogenetic protein receptor type-1A   

  Inverse variance weighted -0.30 (-0.49, -0.11) 0.002  
  MR Egger -0.39 (-0.85, 0.08) 0.102  
  LASSO -0.27 (-0.44, -0.09) 0.003  
  RAPS -0.27 (-0.46, -0.08) 0.006  
  Conmix -0.07 (-0.39, 0.19) 0.594  

 
Note: MR Egger, Mendelian randomization Egger; LASSO, least absolute shrinkage and selection operator; 
RAPS, robust adjusted profile score; Conmix: contamination mixture method. 
 


