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Note: This lecture note is adapted from Rationality in extensive Form Games by Andres Perea.

1 Introduction

In this note, we only consider finite extensive-form game with perfect recall. This includes
perfect and imperfect information extensive-form game. This also includes incomplete information
game because incomplete information can be modeled as a kind of imperfect information with a
change move by Harsanyi.

2 Decision-theoretic Framework

2.1 Subjective Expected Utility

Consider a decision maker who faces the problem of reaching a decision under uncertainty.
Assume that the consequence of a decision depends upon uncertain events that are beyond the
decision maker’s control. We distinguish two types of uncertain events here. The first type contains
random events for which the probabilities of the possible outcomes are objectively unknowns. One
may think of throwing a dice, or spinning a roulette wheel. Such events are called subjective
unknowns. The second type contains uncertain events to which no obvious objective probabilities
can be assigned. Think, for instance, of events that are the result of a decision making process by
other people. These events are called subjective unknowns.

Noe, let us formally define objective and subjective unknowns.
Let C be some finite set, representing the consequences that can possibly be induced by the

decisions available. Let △C be the set of objective probability distributions on C, that is,

△C = {p : C → [0, 1]|
∑
c∈C

p(c) = 1}

Let Ω be some finite set of states, representing the subjective unknowns relevant for the decision
problem. The fact that the consequence of a decision depends on the realization of objective and
subjective unknowns is modeled by identifying each decision with some function f : Ω → △C.
Particularly, f(ω)(c) represents the objective probability that c will happen if decision the realized
state is ω.

F is the set of acts.
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Definition 1. We say that the preference relation ⪰ on F is of the subjective expected utility type
if there exists some probability distribution µ ∈ △(Ω) and some function u : C → R such that for
every f, g ∈ F it holds : f ⪰ g if and only if∑

ω∈Ω
µ(ω)

∑
c∈C

f(ω)(c)u(c) ≥
∑
ω∈Ω

µ(ω)
∑
c∈C

g(ω)(c)u(c)

Here, µ is called a subjective probability distribution on the set of states, whereas u is called a
utility function on the set of consequences. We call

Eµ,u(f) =
∑
ω∈Ω

µ(ω)
∑
c∈C

f(ω)(c)u(c)

is the subjective expected utility of act f generated by µ and u.

Theorem 1. Let the preference relation ⪰ be of the subjective expected utility type, and let there be
some f, g ∈ F with f ≻ g. Let ⪰ be represented by some subjective probability distribution µ ∈ △(ω)
and some utility function u : C → R. Let µ and ũ be such that they also represent ⪰. Then, µ̃ = µ
and there exist numbers A > 0, B ∈ R such that ũ(c) = Au(c) +B for all c ∈ C.

2.2 Conjectures about Opponents’ Behavior

We let Hi be the information set for player i and A(h) be the set of action at h ∈ H.

Definition 2 (Strategy). A strategy for player i is a function si : Hi → A.

In an extensive form game, the possible consequences of a strategic interaction among the
players are represented by the set Z of terminal nodes in the game tree. Therefore, C = Z; For
each player i, there is a utility function ui(z) attached for each terminal z.

In the game, players have some conjecture about other players’ strategy. Therefore, ω = ×j ̸=iSj .
We use µi(s−i) to denote some “measure of likelihood” that player i attaches to the strategy profile
s−i. The subjective probability distribution µi ∈ △S−i is called player i′s conjecture about the
opponents’ strategies.

The objective uncertainty is determined by the chance move. Given “state” ω = s−i and
objective chance move, they induce the probability of each outcome c = z, denoted by P(si, s−i).

Then, the subjective expected utility for a player is:

E(si) =
∑

s−i∈S−i

µi(s−i)
∑
z∈Z

P(si,s−i)(z)ui(z)

Player i′s preferences over his strategies can thus be characterized by: si ⪰i s
′
i if and only if

E(si) ≥ E(s′i).
Except for the concept of rationality, we impose following assumptions:
The first assumption is that the probability distribution µi ∈ △S−i can be written as the

product of its marginal distributions on Sj . We refer to µi
j(sj) as player i

′s conjecture about player
j′s strategy choice.

Assumption 1. For every player i, the conjecture µi is such that for every s−i = (sj)j ̸=i ∈ S−i it
holds: µi(s−i) =

∏
j ̸=i µ

i
j(sj)
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The second assumption is that the conjectures held by different players about player k’s strategy
should coincide.

Assumption 2. For all triples i, j, k ∈ I of of pairwise different players, we have µi
k = µj

k.

By the assumptions above, we may define, for each player i, the probability distribution µi ∈
△Si, representing the players’ common conjecture about player i′s strategy choice. Hence, µi = µj

i

for all players j ̸= i. Such common conjectures are called mixed conjectures about player i.

Definition 3. A mixed conjecture about player i is a probability distribution µi ∈ △Si.

Definition 4. A behavioral conjecture about player i is a vector σi = (σih)h∈Hi
where σih ∈ △A(h)

for every h ∈ H.

For every h ∈ Hi and every action a ∈ A(h), the probability σih is to be interpreted as the
players’ common subjective probability assigned to the event that player i would choose action a
at h.

Player i holds initial conjecture σi. However, during the game, they may need to revise their
conjecture. See Figure 1. Assume that player 2 holds the behavioral conjecture σ1 = c. If player 2′s
information set is reached, then player 2 knows that his initial conjecture about player 1′s behavior
has been contradicted, and should thus revise this conjecture. We call revised conjectures about
the opponents’ past play that players undertake at their own information sets are called beliefs.

Formally, a belief for player i should specify at each of player i′s information sets a conjecture
about the opponents’ past play that has led to this information set. At a given information set,
this conjecture somehow reflects player i′s ”personal theory” about what happened in the past.
Suppose that the game has reached some information set h ∈ Hi and that player i is asked to form
a conjecture about the opponents’ past play. Since player i knows that one of the nodes in h has
been reached, and each node in h can be identified with the path, or past play, that leads to this
node, such a conjecture about past play may be represented as a subjective probability distribution
βih on the set of nodes in h. This leads to the following definition of a belief.

Definition 5 (Belief). A belief for player i is a vector βi = (βih)h∈Hi
where βih ∈ △h for every

h ∈ Hi. A profile (βi)i∈I of beliefs is called a belief system.

The combination of a behavioral conjecture profile (σi)i∈I and a belief system (βi)i∈I specifies,
for each player i and each information set h ∈ Hi, player i′s conjecture about past play up to h
(given by βih) and player i′s conjecture about future play after h (given by σ−i). We refer to such
combinations as assessments.

Definition 6 (Assessments). An assessment is a pair (σ, β) where σ = (σi)i∈I is a behavioral
conjecture profile and β = (βi)i∈I is a belief system.

Example 1. Let (σ, β) be the assessment where σ1 = (c, 0.2f+0.8g, 0.8h+0.2i), σ2 = (0.5d+0.5e)
and β2 = (0.3, 0.7).

In general, an assessment (σ, β) allows us to determine, for every player i and every information
set h ∈ Hi, the expected utility at h generated by the different player i strategies.
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Figure 1: Assessment

2.3 Best response

Given an assessment (σ, β), which behavior by the players may be viewed optimal, given this
assessment? We start to introduce three types of best response.

Let ui(si, σ−i) be the expected utility of Si, given player i′s conjecture σ−i about the opponents’
behavior. Note that ui(si, σ−i) only depends upon the initial mixed conjectures induced by σ , and
not upon the way conjectures are revised in σ.

Definition 7. A strategy si is called a best response against σ if ui(si, σ−i) = maxs′i∈Si
ui(s

′
i, σ−i).

The notion of best response selects strategies that are optimal ”at the beginning of the game”.
However, a best response may no longer be optimal once the initial conjectures in σ have been
contradicted by the play of the game.

Let Hi(si) is the collection of player i information sets that are not avoided by si. Also let
ui[(si, σ−i)|h, βih] be the expected utility of choosing si at information set h, given the beliefs βih
and given the conjecture σ−i about the opponents’ future behavior.

Definition 8. A strategy si is called a sequential best response against the assessment (σ, β) if at
every information set h ∈ Hi(si) we have that ui[(si, σ−i)|h, βih] = maxs′i∈Si(h) ui[(s

′
i, σ−i)|h, βih]

A sequential best response thus constitutes a best response at each of player i′s information
sets that are not avoided by it.

Under some “consistency conditions” on the beliefs β, each sequential best response is also a best
response in the definition 7. The consistency condition basically states that at every information
set h ∈ Hi, the beliefs βih should be compatible with player i′s conjecture σ−i about the opponents’
behavior, whenever h is reached with positive probability under σ. In this case, we say that the
assessment is Bayesian consistent.

For a given nodes x, let Pσ(x) be the probability that x is reached under σ.

Definition 9. As assessment (σ, β) is called Bayesian consistent if for every player i and every

information set h ∈ Hi with Pσ(h) > 0 it holds that βih(x) =
Pσ(x)
Pσ(h)

for all odes x ∈ h.
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Lemma 1. Let (σ, β) be a Bayesian consistent assessment and si a sequential best response against
(σ, β). Then si is a best response against σ.

The third best response is local. In contrast to the notions of best response and sequential
best response, local best response is a criterion which judges the optimality of actions rather than
strategies.

Let σ−h be the restriction of σ on information sets other than h. Let ui[(a, σ−h)|h, βih] be
the expected utility of choosing action a at h, given the conjecture σ−h about the behavior at
information sets other than h (including the conjecture about player i′s behavior at such information
sets), and the beliefs βih.

Definition 10. Let (σ, β) be an assessment, h ∈ Hi, and a an action at h. Then, we say that a is
a local best response against (σ, β) if

ui[(a, σ−h)|h, βih] = max
a′i∈A(h)

ui[(a
′
i, σ−h)|h, βih]

3 Solution Concepts

A criterion of rational decision making in extensive form games should give an answer to the fol-
lowing two questions: (1) for a given assessment (σ, β), which strategies may be viewed acceptable?,
and (2) which assessments (σ, β) may be viewed reasonable?

The answer for (1) is that, for a given assessment, players are expected to choose either a best
response or a sequential best response against this assessment, depending on the concept.

The second question, however, is the most interesting one, and we aim to explore rationality
criteria that give different answers to the question which assessments are ”reasonable”.

3.1 Backward Induction

In this subsection we focus on a special class of games, namely that in which at each point in
time the player knows perfectly which actions and chance moves have occurred until that moment.
Formally, this means that every information set contains exactly one node. Such games are called
games with perfect information.

Since the players’ beliefs βI are trivial in a game with perfect information, the players’ con-
jectures about the opponents’ behavior at any point in the game are completely described by a
behavioral conjecture profile σ.

Backward induction imposes that at every node x in the game, σ should only assign positive
probability to those actions at x which are local best responses against σ.

Definition 11 (Backward Induction). Let Γ be a game with perfect information and σ a behavioral
conjecture profile. Then, σ is said to satisfy backward induction if for every player i and every
decision node x controlled by player i, σix(a) > 0 only if a is a local best response against σ.

A strategy si is called a backward induction strategy if there is a behavioral conjecture profile
σ satisfying backward induction such that si is a sequential best response against σ.

In the definition, when we say best response against σ, we should think it is best response
against (σ, β) where β is the trivial belief system in a game with perfect information.
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3.1.1 Property

How to find this strategy? Behavioral conjecture profiles satisfying backward induction can eas-
ily be found by means of the iterative procedure, which is called the backward induction procedure.
By applying the procedure, you will easily see that:

Lemma 2. For every game with perfect information there is some pure behavioral conjecture profile
σ which satisfies backward induction.

We can have a more stronger uniqueness result if Γ is in generic position. Generic position refers
to that in a game with perfect information, there are no chance moves, and that for every player
i and every pair of different terminal nodes ui(z) ̸= ui(z

′). Then, with usual backward induction
procedure, we get

Lemma 3. Let Γ be a game with be a game with perfect information in generic position. Then,
there is a unique behavioral conjecture profile σ which satisfies backward induction. Moreover, this
σ is pure.

Recall in the definition of backward induction, we focus on action a is a local best response. The
following theorem states an important property of backward induction: sequential best response. If
σ satisfies backward induction, then every behavioral conjecture σi assigns only positive probability
to those player i strategies that are best responses against σ: σi(si) > 0.

Theorem 2. Let Γ be a game with perfect information and σ be a behavioral conjecture profile
which satisfies backward induction. Then, for every player i, we have that σi(si) > 0 only if si is a
sequential best response against σ and also the best response against σ.

The best response comes from the trivially Bayesian consistent.
We should note that player i assigns positive probability only to those strategies that are best

responses for player i also for the revised conjectures about player i. Let Γx be a subgame starting
at x. The notation with x should be think as starting from node x, in the following theorem.

Theorem 3. Let Γ be a game with perfect information and σ a behavioral conjecture profile which
satisfies backward induction. Then, for every node x and every strategy si ∈ Sx

i we have that
σx
i (si) > 0 only if si is a best response against σx in the subgame x.

This theorem follows immediately from the previous one.

3.1.2 Comment

In view of the above theorem, the concept of backward induction assumes that at every subgame,
all players believe that their opponents will choose best responses against σ in the sequel. In
particular, if a subgame can only be reached through a non-best response by player i, then i′s
opponents should still believe that player i will choose a best response against σ in this subgame.
See example in the figure 2.
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Figure 2: Problem of backward induction

3.2 Nash Equilibrium

Recall the subjective utility function:

E(si) =
∑

s−i∈S−i

µi(s−i)
∑
z∈Z

P(si,s−i)(z)ui(z)

We assume players’ utility function ui : Z → R are common knowledge. Then, the only
uncertainty is the subjective probability distributions (µi)i∈I held by the players.

Now, if we assume these subjective probability distributions would also be common knowledge,
then player i would be informed about the conjecture µi held by the opponents about player i, and
each of player i′s opponents would be informed about the conjecture µ−i held by player i about
the other players’ behavior.

Consequently, if the opponents believe that player i chooses a best response, then the opponents’
common conjecture µi about player i should assign positive probability only to those player i
strategies si that are best responses against µ−i. Mixed conjecture profiles with this property are
called Nash equilibria.

Definition 12. A mixed conjecture profile µ = (µi)i∈I is called a Nash equilibrium if for every
player i, µi(si) > 0 only if si is a best response against µ.

A strategy si is called a Nash equilibrium strategy if there is a Nash equilibrium µ such that si
is a best response against µ.

3.2.1 Property

We can have a similar definition for the behavioral conjecture profile. For a given behavioral
conjecture profile σ, we refer to ui(σ) =

∑
siSi

σi(si)ui(si, σ−i) as the expected utility for player i
induced by σ. Nash equilibria may now be characterized as follows.

Lemma 4. A behavioral conjecture profile σ = (σi)i∈I is a Nash equilibrium if and only if for every
player i, ui(σ) = argmaxσ′

i
ui(σ

′
i, σ−i).

Note: in contrast to backward induction, the players’ revision of conjectures does not play a
role in the concept of Nash equilibrium.

Now we consider the existence by Kakutani’s Fixed Point Theorem.

Theorem 4. For every (finite) extensive form game, there exists a Nash equilibrium µ = (µi)i∈I .
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We do have many more existence results that relax assumptions.
Now, let focus on game Γ be a game with perfect information. Let σ be a behavioral conjecture

profile satisfying backward induction. Then, by Theorem 2 and 3, we know σ is then a Nash
Equilibrium, even for each subgame. Moreover, Lemma 2 guarantees that we can always find a
pure behavioral conjecture profile satisfying backward induction, it follows that a game with perfect
information always contains a Nash equilibrium in pure behavioral conjectures.

Lemma 5. Every game with perfect information contains a Nash equilibrium σ in pure behavioral
conjectures. Moreover, this Nash equilibrium σ can be chosen such that in every subgame Γx the
induced behavioral conjecture profile σx constitutes a Nash equilibrium in Γx.

3.2.2 Comment

It should be clear for you: In a game with perfect information, not every Nash equilibrium
satisfies backward induction, however. The fundamental difference between both concepts is that
Nash equilibrium does not require players to believe that their opponents choose optimally at every
subgame, whereas backward induction does.

3.3 Subgame Perfect Equilibrium

Subgame Perfect Equilibrium may be viewed as a combination of backward induction and
Nash equilibrium. By Theorem 3 we know that in games with perfect information, a behavioral
conjecture profile satisfying backward induction induces, in every subgame, a Nash equilibrium of
that subgame. The idea of subgame perfect equilibrium is to extend this property to games without
perfect information.

Definition 13. A behavioral conjecture profile σ is called a subgame perfect equilibrium if for
every subgame Γx, the induced behavioral conjecture profile σx is a Nash equilibrium in Γx.

3.3.1 Property

By construction, every subgame perfect equilibrium is a Nash equilibrium since the whole game
Γ is a subgame.

Lemma 6. In a game with perfect information, a behavioral conjecture profile σ is a subgame
perfect equilibrium if and only if it satisfies backward induction.

Theorem 5. Every game in extensive form has at least one subgame perfect equilibrium.

3.3.2 Comment

As with backward induction, in a subgame perfect equilibrium σ players are required to believe,
in every subgame, that their opponents will choose best responses against σ in this subgame. In
particular, they should believe so even if this subgame could only have been reached via non-best
responses by the same opponents against σ. As with backward induction, the question may be
raised why σ should still constitute a Nash equilibrium in this subgame if the event of reaching this
subgame has contradicted player 2’s conjecture that player 1 will choose optimally against σ.
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Figure 3: Problem of SPE

One could say that the concept of subgame perfect equilibrium requires the players to ”ignore”
the his- tory that has led to a particular subgame, and that each subgame should be treated as if
the game would actually start here.

See next subsection for another problem.

3.4 Perfect Equilibrium

In the concepts of Nash equilibrium and subgame perfect equilibrium, players are required
to attach positive probability only to those opponents’ strategies that constitute best responses.
However, players may still assign positive probability to opponents’ strategies that are not local
best responses. Consider the following game in the figure 3 where σ = (c, e) is a subgame perfect
equilibrium (and hence a Nash equilibrium), but e is not a local best response for any beliefs β for
player 2.

The reason why e is a best response against σ but not a local best response lies in the fact
that player 2′s conjecture σ1 = c excludes the event that player 2′s information set will be reached.
Consequently, player 2 is indifferent between his two actions. How will you solve this problem?

How about this: If player 2 would attach a small positive probability to the actions a and b,
then e would no longer be a best response, and the ”unreasonable” conjecture σ2 = e could thus
be eliminated. This is the basic idea underlying the concept of perfect equilibrium (Selten, 1975).

Now, we will see the power of β. Say that a behavioral conjecture σi about player i is strictly
positive if σih(a) > 0 for every h ∈ Hi and every action a ∈ A(h). A strictly positive behavioral
conjecture thus takes into account all possible actions that may be chosen by player i.

A behavioral conjecture profile σ is called strictly positive if each σi is strictly positive. In the
literature, it is also called completely mixed. For a given strictly positive behavioral conjecture
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Figure 4: Example:PE

profile a every information set is reached with positive probability, that is, Pσ(h) > 0 for every h.
This implies there is a unique belief system β such that (σ, β) is a Bayesian consistent assessment.
We refer to β as the belief system induced by σ. We say that the Bayesian consistent assessment
(σ, β) is strictly positive if σ is strictly positive.

Definition 14. A behavioral conjecture profile σ is called perfect equilibrium if there is a sequence
(σn, βn)n∈N of strictly positive Bayesian consistent assesments such that

(1)(σn)n∈N converges to σ and
(2) σih(a) > 0 only if a is a local best response against (σn, βn) for every n.

Hence, in the concept of perfect equilibrium, for the players to attach positive probability to
an action a it is not sufficient that a is optimal against σ; the action a should, in addition, remain
optimal if σ is replaced by a slightly perturbed conjecture σ that takes all possible actions into
account.

Example 2. See Figure 4. Two pure strategy equilibria: (T, L) and (B,R).
And only (T, L) is PE.

3.4.1 Property

No weakly dominated strategy can be a part of a perfect equilibrium.

Theorem 6. In every perfect equilibrium, every (weakly) dominated strategy is chosen with prob-
ability zero.

Theorem 7. In every extensive form game there is at least one perfect equilibrium.

Note that the concept of perfect equilibrium requires players to assign zero probability to
suboptimal actions by the opponents against σn, but does not explicitly require them to assign
zero probability to suboptimal strategies by the opponents against σ. The following theorem,
however, will show that the latter property is implied by the former. Moreover, this holds for every
subgame, which implies that every perfect equilibrium is a subgame perfect equilibrium.

Theorem 8. Every perfect equilibrium σ is a subgame perfect equilibrium.
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Figure 5: Problem of PE

There is another definition is equivalent to Definition 14 due to Myerson 1978. This definition
do not refer to a conventional optimization. We will see it similarity to the proper equilibrium
later.

Definition 15. Strategy profile σϵ is an ϵ-perfect equilibrium if it is completely mixed, and, for all
i and any si, if there exists s′i with ui(si, σ

ϵ
−i) < ui(s

′
i, σ

ϵ
−i), then σϵ

i (si) < ϵ. A perfect equilibrium
σ is any limit of ϵ-perfect strategy profile σϵ for some seqence ϵ of positive numbers that converges
to 0.

3.4.2 *Normal form perfect equilibrium

Definition 16. A behavioral conjecture profile σ is called a normal form perfect equilibrium if
there is a sequence (σn)n∈N of strictly positive behavioral conjecture profiles such that

(1) (σn)n∈N converges to σ and
(2) σi(si) > 0 only if si is a sequential best response against σn for every n.

3.4.3 Comment

By construction, the concept of perfect equilibrium requires players to assign probability zero
to those actions that are not local best responses against any strictly positive behavioral conjecture
profile. More precisely, if player i has to choose at information set h, then he is believed to choose
an action a which is not only a local best response against the original conjecture profile σ, but
also against some σ close to σ that assigns positive probability to all actions. Here, σ may be
interpreted as some slightly perturbed conjecture.

A disturbing feature, however, is the fact that in the perturbed conjecture if, player i′s conjecture
σ−h about the behavior at other information sets should also assign positive probability to all future
actions controlled by player i himself. This restriction seems difficult to justify if we assume that
players are confident to carry out correctly their own strategies. See Figure 5. σ(a, c) is not a
perfect equilibrium, why?
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Figure 6: PE and Quasi-PE

3.5 Quasi-Perfect Equilibrium

A possible way to overcome the above drawback is by stating that a player, at each of his
information sets, is believed to choose a continuation strategy that is optimal against a slight
perturbation of his conjecture about strategy choices not controlled by himself. This is the idea
behind the concept of quasi-perfect equilibrium, introduced in van Damme (1984).

Definition 17. A behavioral conjecture profile σ is called a quasi-perfect equilibrium if there is a
sequence (σn)n∈N of strictly positive behavioral conjecture profiles such that

(1) (σn)n∈N converges to σ and
(2) for every player i, every information set h ∈ Hi and every si ∈ Si(h) it holds that σi|h(si) > 0

only if si is a sequential best response against σn
−i at h for every n.

Each player i is thus believed, at each of his information sets, to solely apply strategies that not
only are optimal against the original conjecture profile σ−i, but also against some slight perturbation
σn
−i of σ−i in which player i takes into account all possible actions by the opponents. In contrast to

the concept of perfect equilibrium, the perturbation σn
−i no longer includes player i′s own actions.

3.5.1 Property

In fact, there is no general logical relationship between perfect equilibrium and quasi-perfect
equilibrium, that is, a perfect equilibrium need not be quasi-perfect, and a quasi-perfect equilibrium
need not be perfect.

Example 3. See Figure 6. Show ((b, c), e) is a perfect equilibrium but not a quasi-perfect equilib-
rium. (((a, c), e) is the unique quasi-perfect equilibrium.)

σn = (( 1na+ (1− 1
n))b, (1−

1
n)c+

1
nd, (1−

1
2n)e+

1
2nf).

Theorem 9. Every quasi-perfect equilibrium is a subgame perfect equilibrium.

Later, we will see every quasi-perfect equilibrium induces a sequential equilibrium, and that
every sequential equilibrium constitutes a subgame perfect equilibrium.
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Lemma 7. Every quasi-perfect equilibrium is a normal form perfect equilibrium.

3.6 Proper Equilibrium

We introduce the concept of proper equilibrium, which is due to Myerson (1978). We then
show that every proper equilibrium induces a quasi-perfect equilibrium, implying the existence of
quasi-perfect equilibria in every game. This relationship between proper equilibrium and quasi-
perfect equilibrium is due to van Damme (1984). Kohlberg and Mertens (1986) have independently
proved a weaker version of this theorem, stating that every proper equilibrium induces a sequential
equilibrium; a concept which is weaker than quasi-perfect equilibrium.

We say that σ is ϵ-proper if σ is strictly positive and if for every player i and every two strategies
si, ti ∈ Si with ui(si, σ−i) < ui(ti, σ−i) it holds that σi(si) ≤ ϵσi(ti). Hence, if strategy sii performs
worse than some other strategy ti, then player i′s opponents should deem si much less likely than
ti.

Definition 18. Strategy profile σϵ is an ϵ-proper equilibrium if it is completely mixed, and, for
all i and any si, if there exists s′i with ui(si, σ

ϵ
−i) < ui(s

′
i, σ

ϵ
−i), then σϵ

i (si) ≤ ϵσϵ
i (s

′
i). A proper

equilibrium σ is any limit of ϵ-proper equilibrium σϵ as ϵ tends to 0.

It is easily shown that every proper equilibrium is a Nash equilibrium.

Example 4. P357 tf

3.6.1 Property

Theorem 10. Every extensive form game has a proper equilibrium.

Theorem 11. Let Γ be an extensive form game and σ a proper equilibrium. Then, σ is a quasi-
perfect equilibrium.

4 Consistency and Sequential Rationality

In previous section, we have discussed some restrictions on assessments which, roughly speaking,
reflect the requirement that players should believe that opponents act optimally. In the concepts
of Nash equilibrium and normal form perfect equilibrium, this requirement is only imposed at the
beginning of the game, whereas in other concepts such as backward induction, subgame perfect
equilibrium and quasi-perfect equilibrium, it is imposed at every stage of the game. The concepts
discussed so far did not explicitly involve the belief system, however, since explicit restrictions were
put on the behavioral conjecture profile only. In this subsection we discuss some rationality criteria
which impose explicit conditions on the belief system as well.

Recall, given an assessment (σ, β), the behavioral conjecture σi specifies at each of player i′s
information sets h ∈ Hi the common conjecture held by i′s opponents about player i′s behavior at
h. On the other hand, the belief βj specifies at each of player j′s information sets h ∈ Hj player j

′s
personal conjecture about the opponents’ past play that has led to h. In order for an assessment
(σ, β) to be ”acceptable”, it seems to be a necessary requirement that the behavioral conjectures
and beliefs be ”consistent”, that is, do not contradict one another.

We have introduced Bayesian consistency, which states that the beliefs should be induced by
the behavioral conjectures through Bayesian updating, whenever possible. More precisely, if some
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information set h ∈ Hi is reached with positive probability under σ, then player i is able to compute,
for every node x ∈ h, its probability under σ, conditional on the event that h is reached. Bayesian
consistency requires the beliefs βih at h to coincide with these conditional probabilities.

4.1 Perfect Bayesian Equilibrium

Weak Perfect Bayesian Equilibrium require Bayesian consistency.
For a given assessment (σ, β) and information h ∈ Hi, say that a strategy si ∈ Si(h) is a

sequential best response against (σ, β) at h if

ui[(si, σ−i)|h, βih] = max
s′i∈Si(h)

ui[(s
′
i, σ−i)|h, βih].

Definition 19. An assessment is called sequentially rational if for every player i, every h ∈ Hi and
every si ∈ Si(h), we have that σi|h(si) > 0 only if si is a sequential best response against (σ, β) at
h.

Sequential rationality thus requires the players to believe, at every information set h, that the
player at h is playing a sequential best response against (σ, β) at h.

Definition 20. A strategy profile σ of a finite extensive form game is a weak perfect Bayesian
equilibrium (weak PBE) if there exists a system of beliefs β such that

(1) σ is sequentially rational given β, and

(2) Bayesian consistent: for all h on the path of play, i.e. Pσ(h) > 0 it holds that βih(x) =
Pσ(x)
Pσ(h)

for all nodes x ∈ h.

4.1.1 Comment and almost perfect Bayesian equilibrium

While weak perfect Bayesian equilibrium does impose sequential rationality everywhere, it is
insufficiently demanding in the following sense: It places no restrictions on the system of beliefs
on information sets off the path of play. In particular, this means that for games that do not have
perfect information, there will be strategy profiles that are weak perfect Bayesian, and yet are not
subgame perfect.

For example in the Figure 7, profile σ = (LB, l), with beliefs β that assign probability 1 to the
node reached by T, is weak PBE but not subgame perfect.

Moreover, Bayesian consistency notion is weak. See Figure 8. Let σ = (a, (d, f)) and player
2′s belief (1, 0) and (0, 1) respectively. This assessment is Bayesian consistent since both of player
2’s information sets are reached with probability zero under σ. Player 2′s beliefs do not seem
plausible, however, since player 2′s beliefs at his second information set contradict his beliefs at his
first information set. We say that the assessment is not updating consistent.

How to solve this problem? Let P(si,σ−i)(x|h1, βh1) be the probability that the node x is reached,
conditional on h1 being reached and given the beliefs βih1 at h1.

Definition 21. An assessment (σ, β) is called updating consistent if for every player i, every
two information sets h1, h2 ∈ Hi, where h2 comes after h1, and every strategy si ∈ Si(h

2) with
P(si,σ−i)(h

2|h1, βh1) > 0, it holds

βih2(x) =
P(si,σ−i)(x|h1, βh1)

P(si,σ−i)(h
2|h1, βh1)
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Figure 7: weak PBE
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Figure 8: Problem of Bayesian consistency

In the updating consistent, it only consider the following information set of the same player.
We can extend it to any following information set. This can solve the problem of weak PBE. Then,
at information sets off the equilibrium path, beliefs are determined by Bayes’ rule and the players’
equilibrium strategies where possible.

Definition 22. A strategy profile σ of a finite extensive form game is an almost perfect Bayesian
equilibrium ( almost PBE) if there exists a system of beliefs β such that

(1) σ is sequentially rational given β, and
(2) for any information set h1 and the following information set h2 reached with positive prob-

ability from h1 under (σ, β), β(x) is determined by Bayes’ rule according to βh1 and σ.

Theorem 12. Every almost perfect Bayesian equilibrium is subgame perfect.

In some cases, almost perfect Bayesian equilibrium is also not strong enough. See Figure 9
where player 1 and 2 choose A and A′. Player 3’s belief is not constrained. Do you have any idea
to solve this? Actually, we have seen the simialr solution before.

4.2 Sequential Equilibrium

Kreps and Wilson (1982a) proposed a condition on assessments, called consistency, that is
stronger than both updating consistency and Bayesian consistency. The idea is the following.
Suppose that instead of σ the players would hold a behavioral conjecture profile σ in which all
possible actions are taken into account, that is, every action is assigned a positive probability. In
this case, σ would induce a unique belief system β̃ since at every information set a unique belief
vector is obtained by Bayesian updating. Moreover, the behavioral conjectures and the beliefs in
(σ̃, β̃) would be “perfectly compatible” with one another.

Definition 23. An assessment (σ, β) is called consistent if there is a sequence (σn, βn) of strictly
positive Bayesian consistent assessments converging to (σ, β).

16



Figure 9: Caption
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Figure 10: Consistency

The reader may easily verify that every consistent assessment is updating consistent and
Bayesian consistent. In order to see that consistency can be a strictly stronger requirement than
these two criteria, consider Figure 10. Let σ = (a, d, f), player 2 has beliefs (1, 0) and player 3 has
beliefs (0, 1). This assessment is Bayesian consistent and updating consistent, but is not consistent.

Some of the concepts, like perfect equilibrium and quasi-perfect equilibrium, implicitly involve
the belief system β by considering sequences of strictly positive Bayesian consistent assessments
converging to the original assessment, and imposing optimality conditions against assessments in
this sequence. In this subsection, we shall present a ”strategic” condition on assessments, called
sequential rationality, that explicitly uses the belief system.

By simultaneously imposing consistency and sequential rationality, we obtain the concept of
sequential equilibrium (Kreps and Wilson, 1982a).

Definition 24. An assessment (σ, β) is called a sequential equilibrium if (σ, β) is consistent and
sequentially rational.

4.2.1 Property

Note that the concept of perfect equilibrium and quasi-perfect equilibrium also involves a form
of sequential rationality. The strategy σ are bu construction limits of totally mixed strategy σn.
To obtain a sequential equilibrium, one must construct beliefs β such that (σ, β) is consistent and
sequentially rational. Because σn are totally mixed, associated beliefs βn are uniquely defined by
Bayes’s rule. It suffice to take the limit β of a convergent subsequence βn.

Lemma 8. Let σ be a perfect/quasi-perfect equilibrium. Then, there is a belief system β such that
(σ, β) is a sequential equilibrium.

Theorem 13. Every extensive form game contains a sequential equilibrium.
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Lemma 9. Let (σ, β) be a sequential equilibrium. Then, σ is a subgame perfect equilibrium.

Lemma 10. A sequential equilibrium is almost perfect Bayesian.

Note: Sequential equilibrium is very close to (and is implied by) trembling hand perfect in
the extensive form. Roughly speaking, sequential equilibrium requires behavior to be sequentially
rational against a limit assessment, while trem- bling hand perfection in the extensive form requires
the behavior to be sequentially rational along the sequence as well.

4.2.2 Comment

The notion of sequential rationality requires players, at every information set of the game, to
assign positive probability only to those opponents’ strategies which are a sequential best response
at this information set. In particular, they should do so at information sets which can only be
reached if one of the opponents, say player i, has played a strategy that is not a sequential best
response. Even in this case, i′s opponents should believe that player i will choose a sequential
best response in the future. Similar to backward induction and subgame perfect equilibrium, the
reasonableness of this property may be questioned in some examples.

4.3 Forward Induction

There are many forward induction criteria: restrict the way in which players should revise
their conjectures during the game. Although there does not exist a unique definition of forward
induction in the literature, its main idea can be described as follows. Suppose that a player’s initial
conjecture about the opponents’ behavior has been contradicted by the play of the game. In this
case, this player is required to form an alternative conjecture compatible with the current situation
in the game. In other words, the player should study all possible scenarios that could have led to
this situation, and form some subjective belief about these scenarios. Roughly speaking, a forward
induction criterion requires the player to make a distinction between ”more plausible” and ”less
plausible” scenarios, and to assign positive prob- ability only to the ”more plausible” scenarios. The
idea of forward induction is particularly successful in eliminating ”implausible” sequential equilibria
in signaling games.

4.4 Iterated Weak Dominance

Skip.

4.5 Stable Sets of Equilibria

Skip.

4.6 Forward Induction Equilibrium

4.6.1 Signaling Game

4.6.2 Intuitive criterion (Cho and Kreps, 1987)

One sentence summary: the principle of discarding player i actions that, from player i′s view-
point, are dominated by his equilibrium utility.
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