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Appendix A Additional Classification of Articles
Table A1 provides an additional classification of the articles described in Table 1, by research design or
identification strategy. Note that we collapse difference-in-difference and panel analyses into one category
that includes two-way fixed-effects and other estimators of the average treatment effect on the treated (ATT).
We also collapse IV and natural experimental analyses into a single category that includes studies with some
claim of exogenous variation not created by researchers that is argued to facilitate identification of an average
treatment effect (ATE); an intent-to-treat effect (ITT); or a local average treatment effect (LATE).1 This table
shows that using HTEs to detect mechanisms is not unique to any one research design in common usage;
the proportions of articles in these journals that uses HTEs as a mechanism test (given by the “weighted
average” column) is quite similar across all of these designs.

Total Pr(Reports HTE as mechanism test) Weighted
Research design AJPS APSR JoP AJPS APSR JoP average
Experiment 14 21 32 0.50 0.43 0.53 0.49
Difference-in-differences or panel 9 10 14 0.44 0.40 0.36 0.39
Regression discontinuity 2 2 5 0.50 1.00 0.40 0.55
IV or Natural experiments 2 5 7 0 0.80 0.71 0.64
Selection on observables 7 26 41 0.71 0.65 0.44 0.54

Table A1: Authors’ classification of articles published in three leading political science journals in 2021 by
research design. Note that the probabilities reported are those implied by Pr(Reports HTE)× Pr(Mechanism
Test|Reports HTE) in Table 1. In this table, we do not include quantitative articles clear mappings to a
common causal estimand. These omitted articles employ empirical research designs including structural
estimation, development of new measures, and claims to measurement of correlations alone.

Appendix B Motivating Example
A2.1 Incorrect DAG

Figure A1 depicts the DAG that is evaluated by the HTE analysis in Remarks 1-2. Note that the dashed
lines do not correspond to the theoretical model. In the model, only the learning mechanism is active. This
mechanism is evaluated by examining heterogeneity in treatment effects with respect to voters’ prior beliefs.

We note that this graph does not directly correspond to the model in the paper. Here, the valence shock, vi is
measured pre-treatment (ex-ante), and the researcher (wrongly) believes that it moderates treatment effects.
We represent this in the graph with ṽi, a measure of “ex-post” valence.

1This LATE is often termed the complier average causal effect (CACE) in political science.
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ω: Shock

βi(θ): Posterior

ṽi: (Ex-post) valence

vi: (Ex-ante) valence

y1i: Utility y2i: Vote choice

πi(θ): Prior

Figure A1: Incorrect directed acyclic graph representation (relative to the model). The dashed arrows are
not implied by the model but correspond to a test of the valence mechanism.

A2.2 Proofs of Remarks 1-2

Remark 1(a) :

Proof.

CATE(y1, X = π) = E[y1|ω′′, π]− E[y1|ω′, π] (A1)

= E[β(θ|π, ω′′) + vi|ω′′, π]− E[β(θ|π, ω′) + vi|ω′, π] (A2)

= E[β(θ|π, ω′′)]− E[β(θ|π, ω′)] + E[vi]− E[vi] (A3)

= E[β(θ|π, ω′′)]− E[β(θ|π, ω′)] (A4)

where equation (A2) to (A3) follows from the linearity of expectations. Similarly, we have:

CATE(y1, X = π′) = Eβ(θ|π′, ω′′)− Eβ(θ|π′, ω′)

Recall that β(θ | πi, ω) is given by:

β(θ|πi, ω) =
πiφ(g − f(θ, ω))

πiφ(g − f(θ, ω)) + (1− πi)φ(g − f(θ, ω))
=

1

1 + 1−πi
πi

φ(g−f(θ,ω))
φ(g−f(θ,ω))

Given function f and pdf φ, we conclude CATE(y1, X = π) 6= CATE(y1, X = π′).

Remark 1(b) :

Proof.

CATE(y1, v) = E[y1|ω′′, v]− E[y1|ω′, v] (A5)

= E[β(θ|π, ω) + v|ω′′, v]− E[β(θ|π, ω) + v|ω′, v] (A6)

= E[β(θ|π, ω′′)]− E[β(θ|π, ω′)] (A7)

= E[β(θ|π, ω′′) + v′|ω′′, v′]− E[β(θ|π, ω′) + v′|ω′, v′] (A8)

= E[y1|ω′′, v′]− E[y1|ω′, v′] (A9)

= CATE(y1, v
′) (A10)
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Note that v is independent of ω. As a result, equality holds from (A7) to (A8) when we add v′ to both
expectations.

Remark 1(c) :

Follows directly from Remark 1(a) and 1(b).

Remark 2(a) :

Proof. Recall that y2 is given by:

y2 =

{
1 if β(θ|πi, ω) + vi − πC ≥ 0

0 else
(A11)

CATE(y2, X = π) is therefore given by:

CATE(y2,m = π) = E[y2|π, ω′′]− E[y2|π, ω′]
= Pr[y2 = 1|π, ω′′]− Pr[y2 = 1|π, ω′]
= Pr[β(θ|ω′′, π) + vi − πC ≥ 0]− Pr[β(θ|ω′, π) + vi − πC ≥ 0]

= Pr[vi ≥ γ(π, ω′′)]− Pr[vi ≥ γ(π, ω′)],

where γ(π, ω) = πc − β(θ|ω, π). Note that γ(π, ω) ∈ [−1, 1]. Because vi ∼ U(−1, 1), and the posterior
β(θ|ω, π) is continuous in π, CATE(y2, π)− CATE(y2, π

′) 6= 0 almost everywhere.

Remark 2(b) :

Proof.
CATE(y2, v) = E[y2|v, ω′′]− E[y2|v, ω′]

= Pr[y2 = 1|v, ω′′]− Pr[y2 = 1|v, ω′]
= Pr[β(θ|ω′′, πi) + v − πC ≥ 0]− Pr[β(θ|ω′, πi) + v − πC ≥ 0]

To calculate the above probability, the randomness comes from πi. It is useful to rewrite β(θ|ω, πi) + vi −
πc ≥ 0 so that we can separate πi and other non-random components:

πi
1− πi

≥ φ(g − f(θ, ω))
φ(g − f(θ, ω))

πc − v
1− πc + v

(A12)

Note that πi
1−πi is monotone in πi, which has distribution Fπ. We use α(ω, vi) to denote the RHS of (A12).

We can then express Pr(β(θ|ω, πi) + v − πC) as Fπ[
α(ω,v)

1+α(ω,v) ], so the CATE is given by:

CATE(y2, v) = Fπ[
α(ω′′, v)

1 + α(ω′′, v)
]− Fπ[

α(ω′, v)

1 + α(ω′, v)
]

It is clear that CATE(y2, v) depends on the values of v and α. If there exists at least one α > 0 so that
α

1+α ∈ (0, 1), then we can easily find CATE(y2, v) 6= CATE(y2, v
′). A sufficient condition for α ∈ (0, 1)

is min{v, v′} < πC .

Remark 2(c) :

Follows directly from Remarks 2(a) and 2(b).
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Appendix C Directly/Indirectly-Affected versus Latent/Observed Outcomes
We propose a distinction between directly and indirectly-affected outcomes. This distinction is a theoretical
claim about the causal process that generates outcomes of interest. This is different from the distinction
between latent and observed outcomes. The distinction between latent and observed outcomes invokes both
a theoretical claim about the causal process linking latent to observed outcomes as well as an empirical
claim about the observability of the latent outcome. To show that these are distinct classifications, we
propose three hypothetical studies united by a common mechanism—learning—in different contexts and
organize outcomes into Table A2. Note that we index outcomes by their sequence in the subscript and
across the hypothetical studies S1, S2, or S3 in the superscript.

• Study 1: [Inspired by Coppock (2022) and related information experiments.] A researcher randomly
assigns a subject to receive information on a policy issue (e.g., gun control) or a placebo message.
They then measure a subject’s attitudes about gun control policy proposals on a Likert scale. The
proposed mechanism (learning) affects attitudes, which are assumed to be latent, which in turn shape
responses to a (discrete) Likert scale.

– yS11 : Attitudes about gun control policy

– yS12 : Likert-scale approval for gun control policy

• Study 2: [Inspired by motivating example.] Nature stochastically assigns subjects to an adverse shock
(e.g., a natural disaster). Researchers conduct a survey after-the-fact measuring both willingness
to pay for the incumbent (relative to a challenger) and intention to vote for the incumbent. The
proposed mechanism (learning) affects beliefs about the incumbent’s type, which affects expected
utility (measured by willingness-to-pay) and then vote choice (a non-linear function of utility). The
outcomes are thus:

– yS21 : Willingness to pay for incumbent

– yS22 : Intended vote choice for incumbent

• Study 3: Suppose researchers conduct an experiment in which they provide information about a
proposed policy to legislators in an assembly that could use either recorded and voice votes to pass
a bill. The informational intervention affects researcher beliefs about the ideal point of the proposed
policy (which they compare to a known status-quo) through a learning mechanism. These beliefs
shape assesments of expected utility of the bill relative to the status-quo, which in turn shape vote
choice. However, the observability of an individual legislator’s vote depends on the voting method
used to pass the bill (recorded or voice vote), as follows:

– yS31 : Expected utility of bill (relative to status-quo)

– yS32A: Voice vote on bill (individual votes are not observed)

– yS32B: Recorded vote (individual votes are observed)

Table A2 organizes the outcomes for these hypothetical studies according to their classification as directly/indirectly-
affected and latent/observable outcomes. As there are outcomes that fall in all four cells, these examples
illustrate that these concepts are distinct.
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Latent (Unobserved/Unobservable) Observed
Directly Affected yS11 : Attitudes

yS21 : Willingness-to-pay
yS31 : Expected utility

Indirectly Affected yS12 : Likert-scale approval
yS22 Intended vote choice

yS32A: Voice vote yS32B: Recorded vote

Table A2: Classification of outcomes for three hypothetical studies indicates that the directly-/indirectly-
affected classification of outcomes is distinct from the distinction between latent and observable variables.

Appendix D Comparison to Mediation Analysis
In this section, we compare our framework connecting HTEs and mechanisms to mediation analysis. It is
important to note that the two frameworks are built on different principles and objects. The main purpose of
mediation analysis is to identify and estimate various average causal mediation effects (ACMEs). Identifica-
tion of these effects relies on the assumption of sequential ignorability (Imai and Yamamoto, 2013). On the
other hand, our framework aims to infer the activation of a mechanism (for at least one unit in the sample)
by using heterogeneous treatment effects, which instead, relies on exclusion assumptions that we propose
(Assumptions 1-2). The following DAGs facilitate our discussion of the differences in these approaches.

MEDIATION FRAMEWORK

Z M1

M2

Y

U

OUR FRAMEWORK

Z M1

M2

Y

UX

Figure A2: DAGs when mechanisms M1 and M2 are independent. Note that the red arrows are ruled out
by assumption of each respective framework. The left DAG, representing the assumptions of the causal
mediation framework, highlights that all variables U must be in the adjustment set and also cannot be
affected by the treatment Z. The right DAG, representing our framework, emphasizes that if covariate X
seeks to measure the activation of M1, it must not moderate other channels.

Consider first the case with multiple independent causal mechanisms in Figure A2. In the left DAG, treat-
ment Z indirectly affects outcome Y through two channels M1 and M2, and may also directly affect Y .
To non-parametrically identify average indirect effect mediated by M1, the key part of the sequential ig-
norability is Yi(z′,m1,M2i(z

′)) ⊥⊥ M1i|Zi = z. The assumption is challenging to interpret and cannot
be guaranteed by most experimental designs because it involves cross-indices independence, from z to z′.
Graphically, sequential ignorability requires that all variables U should be observed and included in the ad-
justment set. Another important implication of the assumption is that U cannot be affected by the treatment
Z, i.e., the dashed line is not allowed. When these assumptions hold, mediator M1 must be measured in
order to estimate the ACME.
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In the right DAG, treatment Z again affects outcome Y through two channels M1 and M2, and may also
directly affect Y . Mechanism M1 is activated if its average indirect effect is non-zero for some unit. The
existence of HTEs provides a sufficient condition for this activation under both exclusion assumptions. In
our framework, variables U may or may not be measured or included in the adjustment set. Further, U can
be a child of treatment, Z (though this introduces a third mechanism). For HTE to (ever) be informative of
mechanism activation, we need to observe another pre-treatment variable X . It is assumed not to moderate
(average) direct effect and (average) indirect effect mediated by M2. That is, two dashed lines are excluded
in the right DAG in Figure A2. From these DAGs, it is clear that there is no logical ordering of the strength
of the two types of assumptions.

There are many other differences between the two methods. For example, in the mediation analysis, me-
diators must be measurable and measured while these measurements are not required by our framework.
However, in our framework, researchers must have a measured candidate MIV X that is believed to satisfy
Assumptions 1-2. Also, when using HTE to detect mechanisms, researchers need to pay more attention to
whether Y is directly affected outcome. Even though we have emphasized their differences, two frameworks
also have shared features. For example, both require that the total causal effect of Z on Y is identified. This
is explicitly assumed by sequential ignorability {Yi(z,m1i,m2i),M1i,M2i} ⊥⊥ Zi and implicitly assumed
in our framework.

A4.1 Related Mechanisms and Correlated Mediators

Because extension to related mechanisms (correlated mediators) is not our main focus, we only make some
brief comments. Consider two different correlation structures. In the left DAG of Figure A3, mediator
M2 directly affects M1. As mentioned in the Imai and Yamamoto (2013), two assumptions are required to
identify the ACME with respect toM1. The first one is the modified sequential ignorability assumption. Un-
fortunately, with causally dependent multiple mediators, an assumption of no treatment-mediator interaction
effects is also required. For the HTE-mechanism framework, we can simply treat correlated mechanisms as
one (molar) mechanism. Then, as long as exclusion assumptions hold for the average direct effect and other
indirect effects, our results in the main text still hold. One caveat is that if the M1 mechanism is inactive, for
example, because the dashed line in the figure disappears, then the HTE-mechanism framework may yield
misleading inferences about the influence of mechanism 1.

Z M1

M2

Y Z M1

M2

Y

X

Figure A3: Two DAGs with correlated mediators. The blue arrows represent correlation structures that can
be accommodated using HTE analysis within our framework.

Multiple mechanisms can also be correlated due to other common covariates. This correlated structure can
be easily accommodated to the HTE-mechanism framework. For example, in the right DAG of Figure A3,
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variableX affects two indirect channels with respect toM1 andM2. However, X does not moderate theM2

channel and the direct channel, and thus exclusion assumptions hold. In this case, our results can be directly
applied without any modification. Note that in the mediation analysis, this related structure is still classified
as having independent causal mechanisms.

Appendix E Proofs of Propositions
A5.1 Proof of Proposition 1

We prove a stronger version of Proposition 1 for any non-zero L(Y ) where L is a non-zero linear transfor-
mation. By non-zero linear transformation, we mean that there exists a non-zero constant matrixA such that
L(Y ) = AY .

Proof. By definition of CATE:

CATEL(Y )(Xk = x) = EX¬k [L(Y )|Z = z,Xk = x]− EX¬k [L(Y )|Z = z′, Xk = x] (A13)

= EX¬k [L(DE(z, z′;Xk = x) +
J∑
j=1

IEj(z, z
′;Xk = x))] (A14)

= L{EX¬k [DE(z, z′;Xk = x) +

J∑
j=1

IEj(z, z
′;Xk = x)]} (A15)

= L[ADE(z, z′;Xk = x) +
J∑
j=1

AIEj(z, z
′;Xk = x)] (A16)

Equation (A14) follows from the linearity of expectations and the decomposition of the total effect in 11.
Equation (A15) is guaranteed by the linearity of L.

Then, under exclusion assumptions 1 and 2, we can express:

CATEL(Y )(Xk = x)− CATEL(Y )(Xj = x′) = L[AIEj(z, z
′;Xk = x)−AIEj(z, z′;Xk = x′)]

(A17)

HTE exist with respect to Xk if (A17) is non-zero. In this case, then Xk ∈ XMIV by the definition of MIV.

A5.2 Proof of Propostions 2

We prove a stronger version of Proposition 2 for any non-zero L(Y ) where L is a non-zero linear transfor-
mation. By non-zero linear transformation, we mean that there exists a non-zero constant matrixA such that
L(Y ) = AY .

Proof. Prove by contrapositive. Suppose not, which means XMIV is non-empty and for some x, x′ ∈ R,
IEj(Xk = x) 6= IEj(Xk = x′). Then:

L{EX¬k [IEj(z, z
′;Xk = x)} 6= L{EX¬k [IEj(z, z

′;Xk = x′)]} (A18)
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We then can reconstruct CATEL(Y )(Xk = x) 6= CATEL(Y )(Xk = x′) from (A18):

L{EX¬k [IEj(z, z
′;Xk = x)]} 6= L{EX¬k [IEj(z, z

′;Xk = x′)]} (A19)

EX¬k [L(DE(Xk = x) + IEj(Xk = x) + IEi 6=j(Xk = x)] 6= EX¬k [L(DE(Xk = x′) +
J∑
j=1

IEj(z, z
′;Xk = x)]

(A20)

CATEL(Y )(Xj = x) 6= CATEL(Y )(Xj = x′) (A21)

Note EX¬k [DE(Xk = x′)] = ADE(Xk = x) and EX¬k [IEj(z, z
′;Xk = x)] = AIEj(Xk = x′). Equa-

tion (A20) follows because ADE(Xk = x) = ADE(Xk = x′) and AIEi 6=j(Xk = x) = AIEi 6=j(Xk =
x′) under exclusion assumptions 1 and 2. We find HTE with respect to Xk.

So, we have shown that if two conditions do not hold, then HTE exists for Xk = x and Xk = x′. By
contrapositive, we prove that if no HTEs exist with respect to Xk, at least one of the two conditions must be
true.

A5.3 Proof of Proposition 3

Proof. By definition of XR, we know X /∈ XR implies that X must be independent of Y . We prove this
proposition by contrapositive. Let P(ỹ|Z,Xk) be the conditional distribution of h(Y ). Suppose Xk /∈ XR,
then:

CATE(Xk = x) =

∫
ỹd[P(ỹ|Z = z,Xk = x)− P(ỹ|Z = z′, Xk = x)] (A22)

=

∫
ỹd[P(ỹ|Z = z)− P(ỹ|Z = z′)] (A23)

=

∫
ỹd[P(ỹ|Z = z,Xk = x′)− P(ỹ|Z = z′, Xk = x′)] (A24)

= CATE(Xk = x′) (A25)

Equations (A23) and (A24) follow from the fact that Xk is independent of Y if Xk /∈ XR.

Therefore, equivalently, we have shown if HTEs exist with respect to Xk, then Xk ∈ XR by contrapositive.

For additional intuition about how non-linear transformations of Y affect HTE, we use the following Lemma.

Lemma A1. Given pre-treatment variables {X1, X2, ..., Xn} = X and outcome variable Y . Variables
{X1, ..., Xm} ⊂ X are MIVs (denote them as the set XMIV and the remaining as the set Xnon−MIV ) if and
only if there exits function g1(·) and non-additively separable function g2(·), and Y satisfies:

Y = g1(X
non−MIV , XMIV ) + g2(X

MIV , Z) (A26)

A function, F (X1, X2), will be called additively separable if it can written as f1(X1) + f2(X2) for some
functions f1(X1) and f2(X2). Note further that:
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1. (A26) in the above theorem should be understood as

Y = g1(X1, X2, ..., Xn) + g2(X1, ..., Xm, Z).

2. The non-additively separable function g2(XMIV , Z) can take the form g3(T ) + g4(X
MIV , T ) for

some function g3(·) and non-additively separable function g4(·).

For any non-zero linear transformation of Y , h(Y ), calculation of conditional expectations yields:

CATE(X = x)− CATE(X = x′) = E[h2(X
MIV , Z)|X = x]− E[h2(X

MIV , Z ′)|X = x′] (A27)

Equation (A27) is only a function XMIV because h1(·) cancels out.

However, for nonlinear transformations h(Y ), we cannot cancel g1(·) in the absence of additional assump-
tions restricting the functional form of h(Y ).

A5.4 Extension of Proposition 4

In the main text, Proposition 4 indicates that if there exist no HTE for the indirectly affect outcome, Xk can
be any relevant or non-relevant covariate. Now we provide a stronger version of Proposition 4 by imposing
assumptions about the directly-affected outcome, Y , and the form of the non-linear transformation h(Y ).
These assumptions permit additional learning from the lack of HTE in this case.

In practice, most indirectly affected outcomes are discrete variables, such as voting behavior, survey re-
sponses, or choices. Let us consider the following non-linear transformation of the directed affected outcome
Y :

h(Y ) =


y1 Y ∈ (−∞, c1]
y2 Y ∈ (c1, c2]

...

yq Y ∈ (cq+1,∞)

(A28)

Here, will assume yi ∈ R in (A28) has no substantive interpretation. In practice, values of yi are typically
normalizations, that are arbitrarily determined by the researcher. As such, the value is independent of model
parameters.

To simplify some notation, we define:

pi(x; z) ≡ Pr[y ∈ (ci−1, ci]|X = x, Z = z] (A29)

pi(x; z, z
′) ≡ Pr[y ∈ (ci−1, ci]|X = x, Z = z]− Pr[y ∈ (ci−1, ci]|X = x, Z = z′]. (A30)

Note that in the interest of parsimony, we omit M in the above equations even though Y is defined as a
function of Z,X, and M . We maintain Z and X because in order to calculate CATEs, we need at least two
possible values of the treatment Z and two distinct values of the covariate Xk. We define a covariate as
effective as follows:

Definition A1. Xk ∈ X is effective if ∃i ∈ {1, 2, ..., q} and x, x′ ∈ Xk such that pi(x; z, z′) 6= pi(x
′; z, z′).
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Effectiveness means that as Xi changes, it can induce a different probability of h(Y ) = yi. It should be
clear that if Xk is effective, then it must the case that Xk ∈ XR. In general, if Xk is not effective, then
Xk /∈ XR.

Proposition A1. Suppose that observed outcome h(Y ) is a discrete non-linear mapping of directly-affected
outcome Y in equation (A28) and Assumptions 1 and 2 hold. Assume further that Y has an absolutely
continuous distribution. If HTEs do not exist with respect to Xk, then Xk is almost surely not effective.

Proof. Given x, x′ ∈ R, CATEs are given by:

CATE(Xi = x) =

q∑
i=1

yi[pi(x; z)− pi(x; z′)] =
q∑
i=1

yipi(x; z, z
′) (A31)

CATE(Xi = x′) =

q∑
i=1

yi[pi(x
′; z)− pi(x′; z′)] =

q∑
i=1

yipi(x
′; z, z′). (A32)

We now will prove the proposition by contrapositive. Suppose that Xk is effective. If so, then there exists
an index set, D, with at least two elements such that CATE(x) − CATE(x′) =

∑
i∈D yj [pi(x; z, z

′) −
pi(x

′; z, z′)] and any pi(x; z, z′) = 0 for all i /∈ D. Because yi is arbitrarily set and is independent of pi,
and Y has absolutely continuous distribution, the probability that

∑
j∈D yj [pj(x; z, z

′) − pj(x′; z, z′)] = 0
is zero.

We use the following example to illustrate the above proposition.

Example A1. Suppose h(Y ) has the following form:

h(Y ) =

{
y1 Y ∈ (−∞, c1]
y2 Y ∈ (c1,∞)

where Y = h(X1, X2, Z).

Then, let us calculate the CATE X2 , given z, z′ ∈ Z:

CATE(X2 = x) = y1[p1(x; z)− p1(x; z′)] + y2[p2(x; z)− p2(x; z′)]
= y1p1(x; z, z

′) + y2p2(x; z, z
′)

and

CATE(X2 = x′) = y1[p1(x
′; z)− p1(x′; z′)] + y2[p2(x

′; z)− p2(x′; z′)]
= y1p1(x

′; z, z′) + y2p2(x
′; z, z′)

If Xk is not effective, then CATE(X2 = x) = CATE(X2 = x′), therefore there exist no HTE. If Xk is
effective, then non-existence of HTE requires that

y1p1(x; t, t
′) + y2p2(x; z, z

′) = y1p1(x
′; z, z′) + y2p2(x

′; z, z′)

y1
y2

=
p2(x

′; z, z′)− p2(x; z, z′)
p1(x; z, z′)− p1(x′; z, z′)

(A33)
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For arbitrarily chosen y1 ∈ R and y2 ∈ R, the above equality holds with probability zero if p1 or p2 can
take value in a set with Lebesgue measure larger than 0.

Appendix F Strengthening Assumptions
In the main text, Propositions 3 and 4 indicate that for indirectly-affected outcomes, the existence or non-
existence of HTEs are not generally informative about mechanism activation. In this section, we explore the
conditions under which invoking stronger assumptions can provide more information.

Recall the basic problem with indirectly-affected outcomes. In Figure A4, Y is the directly-affected out-
come, and h(Y ) is the non-linear transformation of the directly-affected outcome. Our main result shows
that Xnon−MIV can also induce HTE even though Xnon−MIV does not indicate the mechanism.

Z M1 Y h(Y )

XMIV

Xnon−MIV

Figure A4: Indirectly-affected outcome DGP.

A6.1 Assumptions on the Latent Utility Distributions

In practice, one of the most common cases is that Y is the latent utility, and h(Y ) is the observed action or
discrete choice. If we can re-construct the utility from the observed data, then we can use it as the directly-
affected outcome and use HTE to assess mechanism activation under Assumptions 1-2. From Propositions
1 and 2, we know more information on mechanism activation can be ascertained from HTE on directly-
affected outcome.

To re-construct the utility, one popular solution is to apply random utility models (RUM). In such a model, a
decision maker, i, faces a choice among M alternatives. The utility that decision maker i obtains from alter-
nativem is U im. The decision maker i is assumed to choose alternativem if and only if U im > U im′∀m′ 6= m.
The researcher does not observe the decision maker’s utility. We instead observe only attributes of the al-
ternatives and decision makers. A function V can be specified with those observed attributes to relate to the
decision maker’s utility. Therefore, the utility is decomposed as U im = V i

m + εim, where εim captures the
unobserved factors that affect utility.

The most widely used assumption in RUMs is that ε is independently, identically distributed according to

an extreme value density function. The density function is f(εim) = e−ε
i
me−e

−εim and the CDF is F (εim) =

e−e
εim . The difference between two extreme value variables is distributed logistic: let εi = εim − εim′ , then

F (εi) =
εi

1 + εi

The extreme value distribution (and thus logistic distribution) is similar to normal but has fatter tails. Ac-
cordingly, we get the familiar logit choice probability that the decision maker chooses alternative m:
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eV
i
m∑

m e
V im

In practice, utility is usually specified as a linear function V i
m = Xβ, where X is the vector of observed

variables and β, are parameters. We can estimate β from the data. Then, we could treat V i
m as the directly-

affected outcome to explore the mechanism through HTE. It should be clear that Propositions 1 and 2 hold
for V m

i even if the real utility is U .

Now, we use our motivating example to illustrate how to apply the above RUM and distribution assumptions
in practice. In the main text, we provide a simple model of the effect of exogenous shocks on pro-incumbent
voting. The model specifies the systematic component of utility, V i

m. A RUM requires us to specify a
random component of utility, ε which also affects individual behavior and is additively separable from V i

m

(i.e. not relevant to the theory of interests). Therefore, given the observed voting data we have, if we assume
the distribution of ε is type-I extreme value, then the probability individual votes for the incumbent is

P(Yi2 = 1) =
eV

i
m

1 + eV im

In practice, researchers tend to specify a linear model to approximate V i
m, though other functional forms are

also possible. If V i
m is correctly specified, we then treat V i

m as a directly-affected outcome (utility) and use
this measure when estimating HTE.

A6.2 Discrete Outcomes under Monotonicity Assumptions

In practice, people frequently and implicitly assume monotonicity of treatment effects. We ask whether this
assumption permits inference about mechanism activation for indirectly-affected outcomes of interest. To
be specific, consider the two DGPs in figure A5. We will index these DGPs by s ∈ {1, 2} where s = 1
corresponds to the left DAG and s = 2 corresponds to the right DAG.

Z M1 Y1 h(Y1)

XMIV

Z M1 Y2 h(Y2)

Xnon−MIV

Figure A5: Two different DGPs. On the left, in DGP 1, X is a MIV. On the right, in DGP 2, X is not a MIV.

The left panel assumes X is a MIV. X is not a MIV in the right panel. In the figure, there are no other
mediators. Therefore, both graphs satisfy exclusion assumptions 1 and 2 by construction.

We will assume that Ys is a latent directly-affected outcome and h(Ys) is the observed binary variable:

h(Ys) =

{
0 Ys ∈ (−∞, c]
1 Ys ∈ (c,∞],

(A34)

for some c ∈ (−∞,∞). Propositions 3 and 4 show that we cannot differentiate between the left and right
on the basis of the existence or non-existence of HTE for indirectly-affected outcome h(Ys).
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We will consider what can be gained by imposing a monotonicity assumption of the form: ∂2Y
∂Z∂X > (<)0

(note that the inequalities are strict).2 Clearly montonicity can hold in the left panel (where X is a MIV)
but ∂2Y

∂Z∂X = 0 in the right panel in which X is not a MIV. To explore the implications of monotonicity, we
consider following DGPs for i = {1, 2}:

Yi = gi(Z,X) + e (A35)

ForX ∈ XMIV , e.g., the left DGP in Figure A5, suppose that montonicity holds such that ∂2Y1
∂X∂Z := β(x, z),

where β(x, z) is either strictly positive or negative. For X /∈ XMIV , e.g., the right DGP in Figure A5, by
definition, we have ∂2Y2

∂x∂z = 0.

We ask whether researchers can differentiate these two cases when motonicity holds for the first DGP (e.g.,
an assumption of monotonicity). First, given (A34) and (A35), note that:

E[h(Ys)|Z,X] = Pr(e ≥ c− gs(Z,X)) (A36)

Let fe be the density of e denote its derivative as f ′e. We can then express HTE for h(Y1) as:

−f ′e(c− g1)
∂g1
∂X

∂g1
∂Z

+ fe(c− g1)β(x, z) (A37)

and the HTE for h(Y2) is

− f ′e(c− g2)
∂g2
∂X

∂g2
∂Z

(A38)

The additional term −fe(c− g1)β(x, z) in equation (A37) may help us to differentiate two DGPs by gener-
ating a differently-signed HTE.

Sign Differences
If, under certain x and z, (A38) and the first term of (A37) have the same sign and the second term of (A37)
has the opposite sign and is sufficiently large, (A38) and (A37) will have different signs. Moreover, If e is
uniformly distributed, then f ′e = 0 and thus equation (A38) is equal to 0 while equation (A37) is non-zero.
We summarize the discussion in the following proposition.

Proposition A2. Consider the indirectly-affected outcome h(Ys) satisfying equation (A34) in which mod-
eration effect β(x, z) is monotonic.

(1) Suppose that e is uniformly distributed, then HTE for h(Y2) is 0.

(2) Suppose e is not uniformly distributed, then HTE for h(Y1) and h(Y2) have different signs under two
cases:

2Writing the monotonicity assumption in this way assumes that this derivative exists.
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(2a) f ′e(c− g2)
∂g
∂X

∂g
∂Z < 0 and β(x, z) < f ′e(c−g1)

∂g1
∂X

∂g1
∂Z

fe(c−g1) ; or

(2b) f ′e(c− g2)
∂g
∂X

∂g
∂Z > 0 and β(x, z) > f ′e(c−g1)

∂g1
∂X

∂g1
∂Z

fe(c−g1)

In practice, however, it is difficult to verify conditions in (2). Corollary A1 provides additional assumptions
on g(·) and/or the tail behavior of e that are sufficient to satisfy these conditions.

Corollary A1. Suppose conditions in proposition A2 holds. Assume that:

(a) g is increasing in X and Z,

(b) the distribution of e is unimodal,

(c) β is increasing in X and Z,

then

(1) small values of X and Z satisfy condition (2a), if any such x, z exists;

(2) large values of X and Z satisfy condition (2b), if any such x, z exists.

Proof. It is straightforward to prove the corollary. If we pick small values of x and z in the data, then by
condition (1) g is small and ∂g

∂X
∂g
∂Z > 0, and by (2) f ′e(c− g) < 0, by (3) β is small enough as well. These

together imply 2(a) in proposition A2 is satisfied. The same logic holds for (2).

Appendix G Simulation
Illustration: The distinction between directly-affected and indirectly-affected outcomes is novel to this
paper. To illustrate the logic and implications of learning about mechanisms from HTE in the case of an
indirectly-affected outcome, we provide a short simulation that incorporates real attitudinal data. Specifi-
cally, we consider a hypothetical persuasion experiment that aims to shift support for greenhouse gas regula-
tion among partisans in the US. Consistent with approaches used by scholars of persuasion, we will examine
heterogeneity in partisan affiliation (here, simplified to Democrats and Republicans) (see Coppock, 2022,
etc.). We use data on (1) partisan affiliation; (2) support for greenhouse gas regulation, coded as a binary
outcome where 1 designates support for increased regulation; and (3) demographic covariates from the 2020
American National Election Study. It is useful to note that partisans’ opinions are relatively polarized on
this issue: while 82.2% (95% CI: [80.5%, 84.0%]) of Democrats favor increasing regulations, just 38.3%
(95% CI: [35.7%, 40.9%]) of Republicans favor such regulations. This suggests that partisanship is strongly
prognostic of support for greenhouse gas regulation.

Various theories of learning or additudinal change incorporate mechanisms that imply that partisans may
react differently to information about greenhouse gas regulation. Little, Schnakenberg, and Turner (2022)
classify two mechanisms for belief formation and attitude change: accuracy and directional motives. Within
their model, ideology (partisanship) is posited as a moderator of directional motives but not accuracy mo-
tives, meaning that partisanship is a candidate MIV for directional motives. To this end, we simulate different
processes of attitudinal change to examine when we observe HTE in partisanship. Our simulation proceeds
as follows:
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1. Estimate latent untreated potential outcomes Yi(0) = 1
1+e−Xβ from observed data,

where X={gender, education, ideology, partisanship}.

2. Simulate a (latent) treatment effect of the form:

Yi(1) = Yi(0) + τI(Partisanshipi = P )

We consider three different indicator functions for partisanship. P ∈ {Democrat,
Republican,Democrat ∪ Republican}. The latter case includes the full sample
since the sample is conditioned on either of the two parties.

3. Randomly assign treatment, Z ∈ {0, 1} to half of the sample to reveal (latent)
potential outcomes Yi(Z).

4. Reveal observed potential outcomes L(Yi) = Bernoulli(logit−1(Yi(Z))).

5. Estimate CATE(P = Democrat) − CATE(P = Republican) for the binary
outcome L(Yi).

We vary τ ∈ [−1.5, 1.5], which are treatment effects on a logistic scale.3 Figure A6 reports the results of
our simulation. In the left panel, we see that for non-zero treatment effects (e.g., for any τ 6= 0), we always
observe HTE in partisanship, even when effects on the latent scale are homogeneous, e.g., the degree of
attitudinal change is not moderated by partisanship. We observe different treatment effects for Democrats
and Republicans on the binary outcome even with homogeneous treatment effects on the latent attitude
because of different densities of respondents about the relevant cutpoint in the latent variable (see Figure
A7).

3The assumption of a constant τ is clearly a simplification for the purposes of illustration. It does not generally follow from the
Little, Schnakenberg, and Turner (2022) model.
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Average of CATE|Democrat − CATE|Republican Power of CATE|Democrat − CATE|Republican
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Figure A6: Note that N = 2883 partisans. We assess power at the α = 0.05 level.
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Figure A7: Distribution of latent Yi(0)’s, by party.
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