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Note: This lecture note is adapt from Microeconomic Theory Lecture Notes by Todd Sarver.

1 Nonlinear Optimization Review

2 Comparative Statics: Implicit Function Theorem

Consider an optimization problem: X ⊆ R, T ⊆ R, and f : X × T → R. We call T is the set of
parameters and x ∈ X is the decision variable.

X∗(t) = argmax
x∈X

f(x, t)

Comparative Statics answer question: What happens to the optimal value if we change one
parameter?

The first method to study comparative statics is applying the Implicit Function Theorem. Recall
the IFT:

Theorem 1 (Implicit Function Theorem). Let G(x, y) be a C1 function on a ball about (x0, y0) in
R2. Suppose that G(x0, y0) = c and consider the expression G(x, y) = c.

If ∂G(x0,y0)
∂y ̸= 0, then there exists a C1 function y = y(x) defined on an interval I about the

point x0 such that:
(a) G(x, y(x)) = c for all x in I
(b) y(x0) = y0
(c) y′(x0) = −Gx(x0,y0)

Gy(x0,y0)

There, we first get FOC:

fx(x
∗(t), t) = 0

Then, apply IFT, we get

dx∗(t)

dt
= − fxt(x

∗(t), t)

fxx(x∗(t), t)

What assumptions do we need? We usually impose
(1) A solution exits for every t: X is compact; f is continuous
(2) The solution x∗(t) lies in the interior of X.
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(3) The solution is not the minimum and unique: f is concave, fxx < 0; there f is twice
continuously differentiable.

To have monotone result, like dx∗(t)
dt ≥ 0, we need fxt(x

∗(t), t) ≥ 0.

3 Monotone Comparative Statics: Cardinal

In this section, we hope to relax the above assumptions but still get monotone result.
First to note, X∗(t) = argmaxx∈X f(x, t) is usually a correspondence. If it is the function, i.e.

X∗(t) = x∗(t) is single valued, then it is clear for us that x∗(t) is increasing in t: if t′ ≥ t, then
x∗(t′) ≥ x∗(t).

WhenX∗(t) is a set, how to understand thatX∗(t) is increasing in t? We introduce the following
definition to compare two sets.

Definition 1 (Strong Set Order). For any Y,Z ⊆ X, we say that Z dominates Y in the strong set
order, denoted Z ≥s Y , if for every y ∈ Y and z ∈ Z, min{y, z} ∈ Y and max{y, z} ∈ Z.

Example 1. For singletons, z ≥s y if and only if z ≥ y.

Example 2. For intervals, [3, 5] ≤s [6, 7] and [3, 5] ≤s [4, 7], overlap permitted. However, [3, 5] ≰s

[2, 7]. Ingeneral, Y = [a1, a2] and Z = [b1, b2], Z ≥s Y if and only if b2 ≥ a2 and b1 ≥ a1.

3.1 One-dimensional case

We start with the simple case that there is only one-dimensional decision variable x ∈ X ⊆ R.
Recall, we want to find a relaxed sufficient (hopefully also necessary) condition that can imply
monotone comparative statics. From IFT, it seems that cross-partial derivative fxt(x

∗(t), t) plays
an important role; we try to relax it so that can discard strong assumptions on the function form.

What does fxt(x
∗(t), t) ≥ 0 mean? Interpret! At least, it means fx(x, t) is nondecreasing in

t; ft(x, t) is nondecreasing in x. Can you re-state the above sentence in the discrete way? The
following definition captures the idea.

Definition 2 (Increasing differences). Suppose X ⊆ R, T ⊆ R, and f : X × T → R has increasing
differences in (x; t) if for all x′ > x and t′ > t,

f(x′, t′)− f(x, t′) ≥ f(x′, t)− f(x, t).

Similarly, condition above can also be written as

f(x′, t′)− f(x′, t) ≥ f(x, t′)− f(x, t).

One can show that, if f has good properties (like continuity, twice continuously differentiable),
increasing differences (ID) are equivalent to fxt ≥ 0.

Now, let us see our first comparative statics result.

Theorem 2 (Topkis 1978). Suppose X ⊆ R, T ⊆ R, and f : X × T → R. If f has increasing
differences in (x; t), then X∗(t) = argmaxx∈X f(x, t) is monotone nondecreasing in t (in the strong
set order), that is, t′ ≥ t implies X∗(t′) ≥ X∗(t).
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Proof. Fix any t′ ≥ t, x ∈ X∗(t), and x′ ∈ X∗(t′). By definition of strong set order, we want to
show if x > x′ then x′ ∈ X∗(t) and x ∈ X∗(t′). (If x′ > x, that is fine.)

Suppose x > x′,
0 ≤ f(x, t)− f(x′, t) (x ∈ X∗(t))

≤ f(x.t′)− f(x′, t′) (ID)

≤ 0 (x′ ∈ X∗(t′))

Thus, we must have f(x, t) = f(x′, t) and f(x, t′) = f(x′, t′), which implies x′ ∈ X(t) and
x ∈ X(t′).

In particular, if f(x, t) has a unique maximizer x(t) for each t, then this solution is a nonde-
creasing function. Note that we do not need assumptions that f is differentiable and concave, it
also does not require any assumptions about the solutions being in the interior of X.

3.2 Multidimensional case

To study multiple decision variable case, we first introduce Lattice theory.

Definition 3 (Partially ordered set). A partially ordered set (X,≥) is a set T equipped with a
binary relation ≥ that satisfies

(1)Transitive: x ≥ x′ and x′ ≥ x′′ imply x ≥ t′′.
(2)Reflexive: x ≥ x.
(3)Antisymmetric: x ≥ x′ and x′ ≥ x′′ imply x = x′′.

Definition 4 (meet and join). Given a partially-ordered set (X,≥) and x, y ∈ X,
(1) The meet of x and x′ is x ∧ y = sup{z ∈ X|x ≥ z, y ≥ z}
(1) The join of x and y is x ∨ x′ = inf{z ∈ X|z ≥ x, z ≥ y}

A partially-ordered set is said to be lattice if each doubleton subset has greatest lower bound
(inf) and smallest upper bound (sup).

Definition 5 (Lattice). A partially-ordered set (X,≥) is said to be lattice iff for all x, y ∈ X, we
have x ∧ y ∈ X and x ∨ y ∈ X.

Example 3. Endow Rn with the usual coordinate-wise order:

(x1, x2, ..., xn) ≥ (y1, y2, ..., yn) ⇐⇒ xi ≥ yi∀i

(Rn,≥) is a lattice with

x ∧ y = (min{x1, y1}, ...,min{xn, yn})

x ∨ y = (max{x1, y1}, ...,max{xn, yn})

Figure:
Now, Let us consider the relaxed conditions that can support onotone comparative statics in

the multiple decision variable case. A first idea is still the Increasing differences. In this subsection,
we focus on X ⊆ Rn.
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Definition 6 (Increasing differences). Suppose X ⊆ Rn is a lattice and (T,≥) is a partially ordered
set. A function f : X × T → R has increasing differences in (x; t) if for all x′ > x and t′ > t,

f(x′, t′)− f(x, t′) ≥ f(x′, t)− f(x, t).

Similarly, if f has good properties, we can see it relationships with derivative.

Lemma 1. If f : Rn×Rn → R is twice continuously differentiable, then f has increasing differences

in (x; t) if and only if ∂2f
∂xi∂tj

≥ 0 for i = 1, ..., n, j = 1, ...,m.

Note, be careful about the denominator!
Now, we may jump to the conclusion that we can extent Theorem 2 to the multiple dimensional

case. Is it true? Let us see an example.

Example 4 (Is ID enough for MCS?). Suppose the objective function is

f(x, y, t) = 3tx+ (2 + t)y − (x+ y)2 − x2 − y2

.
Now, by FOC, we get

fx(x, y, t) = 3t− 4x− 2y = 0

fy(x, y, t) = 2 + t− 2x− 4y = 0

We get optimal solution x∗ = 5t−2
6 and y∗ = 4−t

6 .
It violates MCS; however f satisfies ID: fxt = 3 ≥ 0 and fyt = 1 ≥ 0. The issue lies in

fxy = −2 < 0. Roughly speaking, increasing t implies increasing x and y; however, there is
substitute relationship between x and y. There interaction may pull down there values. This will
not be a problem if we let x and y has complementary (positive) relationship.

Definition 7 (Supermodular). Suppose X ⊆ Rn is a lattice and (T,≥) is a partially ordered set.
A function f : X × T → R is supermodular in x if for all x, x′ ∈ X and t ∈ T ,

f(x ∧ x′, t) + f(x ∨ x′, t) ≥ f(x, t) + f(x′, t).

We can understand the condition if we write the condition as

f(x ∨ x′, t)− f(x′, t) ≥ f(x, t)− f(x ∧ x′, t)

The above inequality shows that given parameter t, higher x should induce increasing difference.
Similarly, if f has good properties, there is also a useful characterization of supermodularity for

differentiable functions.

Lemma 2. If f : Rn × Rn → R is twice continuously differentiable, then f is supermodular in x if

and only if ∂2f
∂xi∂xj

≥ 0 for i, j = 1, ..., nandi ̸= j.

Note that supermodularity is a cardinal property, as it is not preserved under monotone trans-
formation.
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Example 5. Let X = {0, 1}2, then consider function f(X):

f(1, 1) = 3, f(1, 0) = f(0, 1) = 1, f(0, 0) = 0

It satisfies supermpdularity in X. However, if we consider
√
f , it is not supermodular. Consider

(1, 0) and (0, 1):

f(1, 1) + f(0, 0) =
√
3 < f(1, 0) + f(0, 1) = 2

Theorem 3 (Topkis 1978). Suppose X ⊆ Rn is a lattice and (T,≥) is a partially ordered set and
function f : X × T → R. If f is supermodular in x and has increasing differences in (x; t), then
argmaxx∈X f(x, t) is monotone nondecreasing in t (in the strong set order).

Note that f is supermodular in x and has increasing differences in (x; t) are implied by super-
modularity in (x, t).

Proof. Let X∗(t) = argmaxx∈X f(x, t). Fix any t′ ≥ t, x ∈ X∗(t) and x′ ∈ X∗(t′). We want to
show, according to the definition of strong set order, x ∧ x′ ∈ X∗(t).

Note that

0 ≤ f(x, t)− f(x ∧ x′, t) (x ∈ X∗(t))

≤ f(x ∨ x′, t)− f(x′, t) (SM)

≤ f(x ∨ x′, t)− f(x′, t′) (ID)

≤ 0 (x′ ∈ X∗(t′))

Thus, f(x, t) = f(x ∧ x′, t) and f(x ∨ x′, t′) = f(x′, t′), which implies x ∧ x′ ∈ X∗(t) and
x ∨ x′ ∈ X∗(t′).

4 Monotone Comparative Statics: Ordinal

In the previous section, we derive the sufficient condition for MSC. Are ID and supermodular
also necessary? Moreover, as we all know, utility functions are only identified up to a mono-
tone transformations, shall we also have some ordinal condition relaxes the cardinal property of
increasing differences?

4.1 One-dimensional case

We consider X ⊆ R and T ⊆ R first.

Definition 8 (Single crossing property). Suppose X ⊆ Rn is a lattice and (T,≥) is a partially
ordered set. A function f : X×T → R satisfies the single crossing property in (x; t) if for all x′ > x
and t′ > t,

f(x′, t) ≥ f(x, t) ⇒ f(x′, t′) ≥ f(x, t′)

and
f(x′, t) > f(x, t) ⇒ f(x′, t′) > f(x, t′)

In the class, we have introduced strict single crossing property.
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Definition 9 (Strict single crossing property). Suppose X ⊆ Rn is a lattice and (T,≥) is a partially
ordered set. A function f : X×T → R satisfies the single crossing property in (x; t) if for all x′ > x
and t′ > t,

f(x′, t) ≥ f(x, t) ⇒ f(x′, t′) > f(x, t′)

(1) The single crossing property is named after the similar property of a single-variable function.
Fix any x′ > x and define a function g : T → R by g(t) = f(x′, t) − f(x, t). The single crossing
property implies that g crosses zero once from below.

(2) Equivalently, for fixed x′ > x, the function f(x′, ·) crosses the function f(x, ·) once from
below. Keep in mind that to check for the single crossing property, we want to look for single
crossing of the function as we increase t while holding fixed the pair of values x and x′.

The following lemma implies that SC is a weaker (less restrictive) condition that ID.

Lemma 3. If f has increasing differences in (x; t), then it has the single crossing property in (x; t).
That is, ID implies SC.

Figure.

Theorem 4 (Milgrom and Shannon 1994). Suppose X ⊆ Rn is a lattice and (T,≥) is a partially
ordered set and function f : X × T → R. If f satisfies single crossing property in (x; t), then
argmaxx∈X f(x, t) is monotone nondecreasing in t (in the strong set order).

Proof. Let X∗(t) = argmaxx∈X f(x, t). Fix any t′ ≥ t, x ∈ X∗(t) and x′ ∈ X∗(t′). We need to
show if x > x′ then x′ ∈ X∗(t) and x ∈ X∗(t′).

First,

x ∈ X∗(t) ⇒ f(x, t) ≥ f(x′, t)

⇒ f(x, t′) ≥ f(x′, t′) (SC)

⇒ x ∈ X∗(t′)

Next, prove x′ ∈ X∗(t) by contradiction:

x /∈ X∗(t) ⇒ f(x, t) > f(x′, t)

⇒ f(x, t′) > f(x′, t′) (SC)

⇒ x′ /∈ X∗(t′)

a contradiction. Thus, we must have x′ ∈ X∗(t).

One may wonder whether there is a condition even weaker than the single crossing property
that can be used to obtain monotone comparative statics. It turns out that the answer depends on
the flexibility that we have in specifying the constraint set X.

(1) If the constraint set X is fixed, then a condition like single crossing may not be necessary
for solutions to be nondecreasing in the parameter t.

(2) If we require monotonicity of the solution set in t for all possible constraint sets S ⊆ X,
then the single crossing property becomes a necessary condition.

Theorem 5. Suppose X ⊆ Rn is a lattice and (T,≥) is a partially ordered set and function
f : X × T → R. If argmaxx∈S f(x, t) is monotone nondecreasing in t (in the strong set order) for
each S ⊆ X of the form S = {x, x′}, then f satisfies the single crossing property in (x; t).
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Thus, combined the above two theorems, we get see that the single crossing property is the
weakest condition that can ensure monotone comparative statics on every possible constraint set
S ⊆ X.

Corollary 1. Suppose X ⊆ Rn is a lattice and (T,≥) is a partially ordered set and function
f : X × T → R. If argmaxx∈S f(x, t) is monotone nondecreasing in t (in the strong set order) for
each S ⊆ X if and only if has the single crossing property in (x; t).

In some cases, ID is also a necessary condition because ID is equivalent to SC. For example, if
the objective function has the form f(x, t)− px.

Theorem 6. Suppose X ⊆ Rn is a lattice and (T,≥) is a partially ordered set and function
f : X×T → R. Then f(x, t)−px has the single crossing property in (x; t) for all p ∈ R if and only
if f has increasing differences in (x; t).

4.2 Multidimensional case

In this subsection, we start to consider the case X ⊆ Rn and T ⊆ Rm.
The definition of single crossing is the same. For supermodularity, we can relax it to be qua-

sisupermodularity

Definition 10 (Quasisupermodular). Suppose X ⊆ Rn is a lattice and (T,≥) is a partially ordered
set. A function f : X × T → R is quasisupermodular in x if for all x, x′ ∈ X and t ∈ T ,

f(x, t) ≥ f(x ∧ x′, t) ⇒ f(x∨′, t) ≥ f(x′, t)

and
f(x, t) > f(x ∧ x′, t) ⇒ f(x∨′, t) > f(x′, t)

Theorem 7. Suppose X ⊆ Rn is a lattice and (T,≥) is a partially ordered set and function
f : X × T → R. If f is quasisupermodular in x and satisfies the single crossing property in (x; t),
then argmaxx∈X f(x, t) is monotone nondecreasing in t (in the strong set order).

Proof. Let X∗(t) = argmaxx∈X f(x, t). Fix any t′ ≥ t, x ∈ X∗(t) and x′ ∈ X∗(t′). Note that

x ∈ X∗(t) ⇒ f(x, t) ≥ f(x ∧ x′, t)

⇒ f(x ∨ x′, t) ≥ f(x′, t) (QSM)

⇒ f(x ∨ x′, t′) ≥ f(x′, t′) (SC)

⇒ x ∨ x′ ∈ X∗(t′)

Next, we prove that x ∧ x′ ∈ X∗(t) by contradiction:

x ∧ x′ ∈ X∗(t) ⇒ f(x, t) > f(x ∧ x′, t)

⇒ f(x ∨ x′, t) > f(x′, t) (QSM)

⇒ f(x ∨ x′, t′) > f(x′, t′) (SC)

⇒ x′ ∈ X∗(t′)

a contradiction to the assumption that x′ ∈ X(t′). Therefore, it must be the case that x ∧ x′ ∈
X∗(t).
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So far, we have only consider the objective function containing parameter t. We can also alter
the constraint set.

Theorem 8. Suppose X ⊆ Rn is a lattice and (T,≥) is a partially ordered set and function
f : X × T → R. If f is quasisupermodular in x and satisfies the single crossing property in (x; t),
then argmaxx∈S f(x, t) is monotone nondecreasing in t and S (in the strong set order), that is for
t′ ≥ t and S′ ≥ S,

argmax
x∈S′

f(x, t′) ≥ argmax
x∈S

f(x, t).

In particular, suppose we have a constraint set S(t) that is also parameterized by t, and suppose
this set is monotone nondecreasing in t in the strong set order. Then the above theorem shows that
under single crossing and quasisupermodularity, the solution set is nondecreasing in t, that is, for
all t′ ≥ t,

argmax
x∈S(t′)

f(x, t′) ≥ argmax
x∈S(t)

f(x, t).

The necessity of single crossing property and quasisupermodular can also be established. There-
fore, we get the next general result.

Theorem 9 (Milgrom and Shannon 1994). Suppose X ⊆ Rn is a lattice and (T,≥) is a partially
ordered set and function f : X × T → R. Then argmaxx∈S f(x, t) is monotone nondecreasing in
t and S (in the strong set order) if and only if f is quasisupermodular in x and has the single
crossing property in (x; t).

5 Monotone Comparative Statics: Greatest and Least Solutions

When X ⊆ R, the existence of a largest and smallest maximizer of an objective function f can
be ensured by imposing standard topological assumptions, such as compactness of X and continuity
of f . When in the multidimensional case, we need lattice to define greatest and least maximizers.

Lemma 4. Suppose X ⊆ Rn is a lattice and (T,≥) is a partially ordered set and function f :
X × T → R. If f is quasisupermodular in x, then the solution set X∗(t) = argmaxx∈X f(x, t) is a
sublattice of X for each t.

Proof. Similar to the proof of Theorem 7.

Definition 11 (Complete lattice). A lattice (T,≥) is said to be complete if for every S ⊆ X, a
greatest lower bound inf(S) and a least upper bound sup(S) exist in X, where inf(∅) = sup(X)
and sup(∅) = inf(X).

Lemma 5. Suppose X ⊆ Rn is a nonempty lattice and is compact. Then, X has a greatest and
least element, that is, there exist x, x such that x ≤ x ≤ x for all x ∈ X.

Proof. We will prove the existence of a greatest element x ∈ X. Since X is compact, the
set argmaxx∈X xi is nonempty (the set of maximizers of the continuous function g(x) = xi is
nonempty). For each dimension i ∈ {1, 2, ..., n}, fix x̂i ∈ argmaxx∈X xi. Let x = x̂1 ∨ ...∨ x̂n. That
is, x is the coordinate-wise maximum of all of the vectors x̂i. And we can easily see x ∈ X because
X is a lattice.
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Lemma 6. Suppose Y,Z ⊆ Rn, and suppose each of there sets greatest and least elements, y, y ∈ Y
and z, z ∈ z. If Z ≥s Y , then z ≥ y and z ≥ y.

Theorem 10. Suppose X ⊆ Rn is a lattice and (T,≥) is a partially ordered set and function
f : X × T → R. If f is continuous in x and quasisupermodular in x, then:

(1)The solution set X∗(t) = argmaxx∈X f(x, t) is nonempty and has greatest and least elements
x(t) and x(t) for each t ∈ T .

(2)If f also has the single crossing property in (x; t), then t′ ≥ t implies x(t′) ≥ x(t) and
x(t′) ≥ x(t).

Proof. Since X is compact and f is continuous in x, the usual arguments imply that X(t) is
nonempty and compact for each t. Since f is quasisupermodular in x, Lemma 4 implies X∗(t) is
also a sublattice of X. Then since X∗(t) is a lattice and is compact, Lemma 5 implies there exist
x(t), x(t) ∈ X∗(t) such that x(t) ≤ x ≤ x(t) for all x ∈ X∗(t).

If f also satisfies the single crossing property in (x; t), then the set of maximizers X(t) is
monotone nondecreasing in t in the strong set order by Theorem 9. That is, t′ ≥ t implies X∗(t′) ≥S

X∗(t). By Lemma 6, we get x(t′) ≥ x(t) and x(t′) ≥ x(t).

6 Supermodular Game

Each player in the game solves a maximization problem defined by the best response function.
Therefore, we can easily extent the above MCS results to the game theory.

Definition 12 (Supermodular Game). Let N = {1, 2, ..., n} denote the set of players. A normal-
form game (N, (Si)i∈N , (ui)i∈N ) is a supermodular game if for each i ∈ N :

(1) Si ⊆ Rmi is a lattice and is compact.
(2) ui(si, s−i) is continuous in si for fixed s−i.
(3) ui(si, s−i) is quasisupermodular in si and satisfies the single crossing property in (si; s−i).

The classic definition of a supermodular game due to Topkis (1979) assumes each player i has
a utility function ui that is supermodular in their own strategy si and has increasing differences in
(si; si). But you can see here, we use a more genenral ordinal condition.

Define the best-response correspondence Bi : S−i → Si for player i by

Bi(s−i) = argmax
si∈Si

ui(si, s−i)

Theorem 11. Suppose (N, (Si)i∈N , (ui)i∈N ) is a supermodular game. Then:
(1) Bi(s−i) is nonempty and has greatest and least elements Bi(s−i) and Bi(s−i).
(2) If s′−i ≥ s−i, then Bi(s

′
−i) ≥ Bi(s−i) and Bi(s

′
−i) ≥ Bi(s−i).

Can you see what the effect of each conditions of supermodular game is in the above theorem?
In the case where players have single-dimensional strategy spaces—which is again what you

should be thinking of for intuition—the result simply says that there are upper and lower bounds
in Bi(s−i) and these are nondecreasing in s−i.

Example 6 (Supermodular Game). (Bertrand Competition) Suppose firms 1, 2, ..., I simultaneously
choose prices p ∈ [0, 1], and the demand is
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Di(pi, p−i) = ai − bipi +
∑
j ̸=i

dijpj

where bi, dij ≥ 0.
The marginal cost is ci. Thus, the profit is

π(pi, p−i) = (pi − ci)Di

(1) The strategy space is a lattice and compact.
(2) ui(pi, p−i) is continuous in pi for fixed p−i.

(3) ∂2π
∂pi∂pj

= dij∀j ̸= i. Thus satisfies ID (and thus SC).

Therefore, Bertrand Competition is a supermodular game.

6.1 Equilibrium Existence

Now, let us consider the equilibrium for the supermodular game. Define the best-response
correspondence of all players B : S → S by

B(s) =
∏
i∈N

Bi(s−i) = B1(s−1)× ...×Bn(s−n).

Recall that the fixed points of this correspondence are precisely the pure-strategy Nash equilibria
of the game:

s ∈ B(s) ⇐⇒ s is a NE

For a given supermodular game, define functions B : S → S and B : S → S by

B(s) = (Bi(s−i))i∈N = (B1(s−1), ..., Bn(s−n))

B(s) = (Bi(s−i))i∈N = (B1(s−1), ..., Bn(s−n))

and note that

s = B(s) ⇒ s is a NE

s = B(s) ⇒ s is a NE

Theorem 12 (Tarski fixed point theorem). Suppose X ⊆ Rm is a nonempty lattice that is compact,
and suppose function f : X → X is nondecreasing. Then f has a fixed point. Moreover, x =
sup{s ∈ X : x ≤ f(x)} is the largest fixed point, and x = inf{x ∈ X : x ≥ f(x)} is the smallest
fixed point.

Proof.

Theorem 13 (Topkis 1979). Suppose (N, (Si)i∈N , (ui)i∈N ) is a supermodular game. Then a pure-
strategy Nash equilibrium exists. Moreover, s = sup{s ∈ S : s ≤ B(s)} is the largest Nash
Equilibrium, and s = inf{s ∈ S : s ≥ B(s)} is the smallest Nash equilibrium.
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Proof. By theorem 11, B(s) is nondecreasing in s. Therefore, s is a fixed point of B by Tarski fixed
point theorem and hence a NE. To see that it is the largest Nash equilibrium, consider any other
Nash equilibrium strategy profile s ∈ S. By definition, s ∈ B(s) and therefore s ≤ B(s). Thus,
s ∈ {s′ ∈ S : s′ ≤ B(s′)}, which implies s ≤ s.

We can also extent the definition of supermodular game so that it dependes on paramter t.
Similar to MCS, we can study the Comparative Statics of NE.

Definition 13 (Parameterized supermodular game). A parameterized supermodular game
(N, (Si)i∈N , (ui)i∈N , T ) is a family of supermodular games with payoff functions that are pa-

rameterized by t in some partially ordered set T , such that for each i ∈ N :
(1) Si ⊆ Rmi is a lattice and is compact.
(2) ui(si, s−i, t) is continuous in si for fixed s−i and t.
(3) ui(si, s−i) is quasisupermodular in si and satisfies the single crossing property in (si; s−i, t).

Theorem 14. Suppose (N, (Si)i∈N , (ui)i∈N , T ) is a parameterized supermodular game, and let s(t)
and s(t) denote the largest and smallest Nash equilibria for each t ∈ T . Then these equilibria are
nondecreasing in t.

6.2 Iterated Strict Dominance and Rationalizability

Lemma 7. Suppose (N, (Si)i∈N , (ui)i∈N ) is a supermodular game. Let z, z ∈ S be the smallest and
largest strategy profiles. If si ≱ Bi(z−i) or si ≰ Bi(z−i), then si is strictly dominated. Thus the
profiles of undominated strategies for each player are contained in [B(z), B(z)] = {s ∈ S : B(z) ≤
s ≤ B(z)}

Proof. 1, special case of one-dimensional strategy spaces Si ⊆ R.
Since Bi(z−i) is the least best response of player i to the smallest profile z−i of other players’

strategy, si < Bi(z−i), we have

ui(Bi(z−i), z−i) > ui(si, z−i)

Then, by single crossing of ui in (si; s−i), for any strategy profile s−i ≥ z−i, we have that

ui(Bi(z−i), s−i) > ui(si, s−i)

Thus, si is strictly dominated by Bi(z−i).
2, multidimensional case: the problem lies in that si ≱ Bi(z−i) does not necessarily imply

si < Bi(z−i)(since si could be lower in one dimension but higher in others).
Fix any si ≱ Bi(z−i), then at least in one coordinate, si is strictly lower than Bi(z−i).

si ∧Bi(z−i) < Bi(z−i) ⇒ ui(Bi(z−i), z−i) > ui(si ∧Bi(z−i), z−i)

⇒ ui(i∨Bi(z−i), z−i) > ui(si ∧Bi(si), z−i) (QSM)

⇒ ui(i∨Bi(z−i), s−i) > ui(si ∧Bi(si), s−i) (SC)
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According the above lemma, we can apply iterated elimination of strictly dominated strategies.

In the second round, we get B2(z) = B(B(z)) and B
2
(z) = B(B(z)). Keep going! You will find

in Sk ⊆ [Bk(z), B
k
(z)]. A natural question is whether they will converge in the limit and what is

the limit? They will converge to precisely the largest and smallest Nash equilibria if the game is
continuous.

Definition 14 (continuous supermodular game). A supermodular game (N, (Si)i∈N , (ui)i∈N ) is a
continuous supermodular game if each ui is continous in (si, s−i).

Theorem 15 (Milgrom and Roberts 1990). Suppose (N, (Si)i∈N , (ui)i∈N ) is a continuous super-
modular game. Then the set of serially undominated strategy profiles (those that survive iterated
elimination of strictly dominated strategies) has largest and smallest elements s and s. Moreover,
both of these strategy profiles are Nash equilibria.

Proof. First to note zk is an increasing sequence and zk is a decreasing sequence.
Then, since they are bounded and monotone, by monotone convergence theorem, limit exist.

We denote them by s and s.
Now to show s and s are NE. Consider s. We have

ui(z
k+1
i , zk−i) ≥ ui(si, z

k
−i)

Then, taking the limit k → ∞ and by continuity, we obtain

ui(si, s−i) ≥ ui(si, s−i)

for all si ∈ Si.
Thus, s is a NE. An analogous argument shows that s is a Nash equilibrium.

Corollary 2. A continuous supermodular game with a unique Nash equilibrium is dominance solv-
able.

Example 7 (Bertrand Game). Let us go ack to the example 6. For simplicity, we assume there
are only two firms and the demand function is Di(pi, pj) = 1− 2pi + pj.

We further assume zero marginal costs. Thus the profit function is

πi(pi, pj) = pi(1− 2pi + pj)

Note that ∂πi
∂pi

= 1− 4pi + pj. We find NE is (13 ,
1
3). Let us apply iterated dominance (iterative

removal of (strictly) dominated strategies).
In the first round, S0

i = [0, 1]. According to the lemma 7, the smallest strategy of player j is 0.

Then, since ∂πi
∂pi

= 1 − 4pi when sj = 0, any pi <
1
4 is dominated (p∗i =

1+pj
4 is increasing in

pj). Similarly, the largest strategy for player j is 1. Then ∂πi
∂pi

= 2− 4pi, any pi >
1
2 is dominated.

Therefore, we get our undominated set S1
i = [14 ,

1
2 ]; by symmetry, S1

j = [14 ,
1
2 ].

Apply the above logic, in the round k,

we have sk = 1
4 + sk−1

4 = 1
4 + 1

16 + sk−2

16 = ... = 1
4 + 1

16 + ...+ 1
4k

+ s0

4k
;

sk = 1
4 + sk−1

4 = 1
4 + 1

16 + sk−2

16 = ... = 1
4 + 1

16 + ...+ 1
4k

+ s0

4k

We can see limk→∞ sk = limk→∞ sk = 1
3 .
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